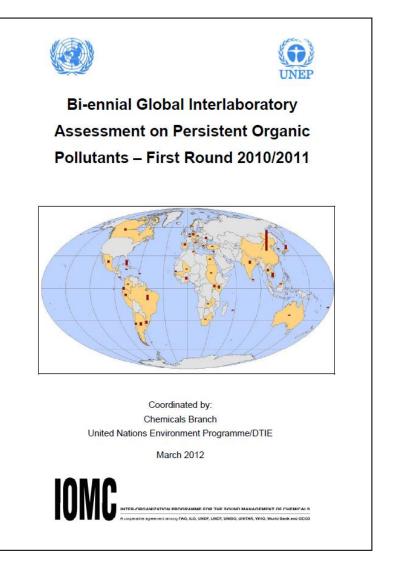
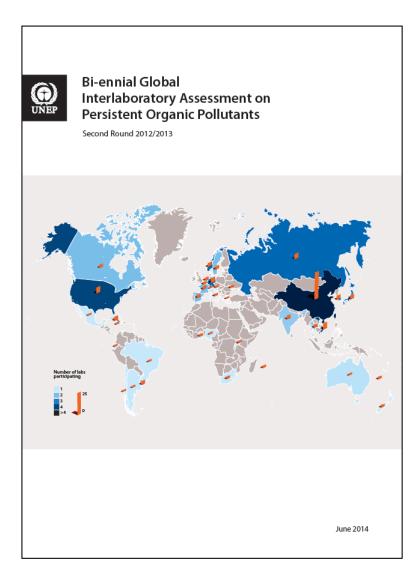




# Results and lessons learned from the second round of the 'Biennial global interlaboratory assessment of POPs laboratories'


Heidelore Fiedler Örebro University, School of Science and Technology, MTM Research Centre SE-701 82 Örebro, Sweden E-mail: heidelore.fiedler@oru.se



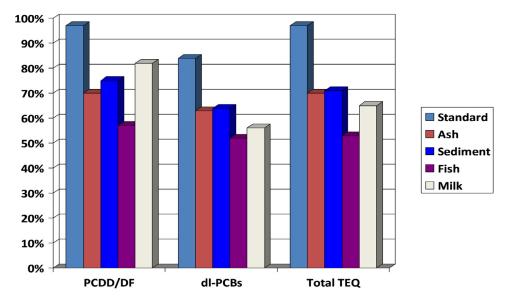

#### Stockholm Convention on POPs (2)

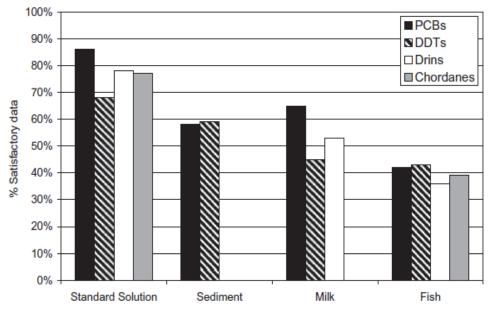
- Article 16: Global Monitoring Plan (GMP) established, guidance developed
- COP decisions SC-3/16, SC-4/31, SC-5/18 and SC-6/23;
- For Stockholm Convention: aims to "confirm a 50% decline in the levels of POPs within a 10 year period"
  - → POPs laboratories must be capable at any time to analyse samples for POPs within a margin of ±25%;
  - $\rightarrow$  Harmonized data generation and assessment
- Guidance document for monitoring and list of POPs must be harmonized as new POPs – and new matrices – are added.

#### 2 Rounds of interlaboratory assessments






#### Global interlaboratory assessments on POPs


- Coordination:
  - UNEP/DTIE Chemicals Branch, Heidi Fiedler
- Organisers:
  - Örebro University, Man-Technology-Environment Research Center (MTM), Bert vanBavel, Helena Nilsson
  - VU University Amsterdam, Institute for Environmental Studies (IVM), Jacob de Boer, Ike van der Veen

#### 1<sup>st</sup> Global Interlaboratory Assessment

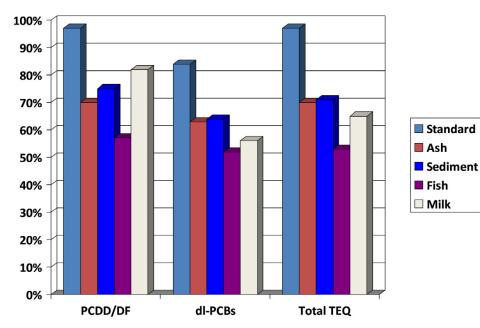
#### **Performance of laboratories**

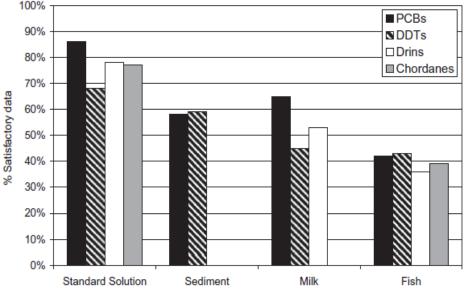
The overall goal is to reach a maximum analytical variation of 25% between the participating laboratories (z < |2|).





z-scores can be interpreted as follows:
|z| < 2: Satisfactory performance</li>
2 < |z| < 3: Questionable performance</li>
|z| > 3: Unsatisfactory performance


# Interlaboratory assessment, 1<sup>st</sup> round


Trends in Analytical Chemistry, Vol. 46, 2013

First worldwide UNEP interlaboratory study on persistent organic pollutants (POPs), with data on polychlorinated biphenyls and organochlorine pesticides

S.P.J. Van Leeuwen, B. Van Bavel, J. De Boer

Trends





Trends

Trends in Analytical Chemistry, Vol. 46, 2013

#### Results for PCDD/PCDF and dl-PCBs in the First Round of UNEPs Biennial Global Interlaboratory Assessment on Persistent Organic Pollutants

M. Abalos, E. Abad, S.P.J. van Leeuwen, G. Lindström, H. Fiedler, J. de Boer, B. van Bavel

# Narrative summary of 1<sup>st</sup> round

#### dl-POPs

- 37 labs submitted data for PCDD/PCDF in standard solution, 29 labs for dl-PCB
- 26 labs submitted results for PCDD/PCDF in fly ash and sediment; 20 and 22 for dl-PCB
- 19 and 15 labs submitted for PCDD/PCDF in fish and human milk; 15 for dl-PCB
- For dl-POP unexpectedly good results,
- Best results were obtained for standard solution: RSD(TEQ<sub>PCDD/PCDF</sub>) = 8%
- Weakest results obtained for fly ash: RSD(TEQ<sub>total</sub>) = 20%

#### **Basic POPs**

- Good performance on test solution indicates satisfactory instrumental calibration
- Performance PCB>OCPs
- $\Sigma$ PCB: performance Africa and GRULAC slightly worse than others For OCPs picture is less clear.
- Generally <<50% satisfactory z-scores for naturally contaminated test samples

# Registration form (2<sup>nd</sup> round)

| Name of Laborator                      | y:            |               |                |            |             | Lab code*:     |            |  |
|----------------------------------------|---------------|---------------|----------------|------------|-------------|----------------|------------|--|
| Address (for shipm                     | ent)          |               |                |            |             |                |            |  |
| City:                                  |               |               | Contact        | Name:      |             |                |            |  |
|                                        |               |               | person:        |            |             |                |            |  |
| Country:                               |               |               |                | E-mail:    |             |                |            |  |
| *: Lab code from 1 <sup>st</sup> Round |               |               |                |            |             |                |            |  |
|                                        |               |               |                |            |             |                |            |  |
|                                        |               |               |                |            |             |                |            |  |
| My laboratory is in                    | terested in a | analyzing the | e following m  | atrices an | nd POPs an  | d provide the  | analytical |  |
| results according to                   | the reporti   | ng scheme a   | nd timetable ( | analysis   | within eigh | nt weeks after | receipt):  |  |
| Test material                          |               | Per           | sistent Orgai  | nic Pollu  | tants       |                |            |  |
| Standard solution                      | OCP           | $PCB_6$       | PCDD/PCD       | F 🔲 d      | I-PCB 🔲     | PBDE           | PFOS 🔲     |  |
| Sediment                               | OCP           | $PCB_6$       | PCDD/PCD       | F d        | I-PCB 🔲     | PBDE           | PFOS 🔲     |  |
| Fish                                   | OCP           | $PCB_6$       | PCDD/PCD       | F 🔲 d      | I-PCB 🔲     | PBDE           | PFOS 🔲     |  |
| Human milk                             | OCP           | $PCB_6$       | PCDD/PCD       | F 🔲 d      | I-PCB 🔲     | PBDE           | PFOS 🔲     |  |
| Human blood                            |               |               |                |            |             |                | PFOS       |  |
| Air extract                            | OCP           | $PCB_6$       | PCDD/PCD       | F 🔲 d      | I-PCB 🔲     | PBDE           | PFOS       |  |
| Water                                  |               |               |                |            |             |                | PFOS       |  |
| Transformer oil                        |               | $PCB_6$       |                |            |             |                |            |  |
| Transformer oil                        |               | $PCB_6$       |                |            |             |                |            |  |

# Test samples in 2<sup>nd</sup> round (2012-2013)

#### **Standard solutions**

- OCPs: aldrin, dieldrin, endrin, chlordanes, heptachlors, DDTs, hexachlorobenzene, mirex, HCHs, endosulfans, chlordecone, pentachlorobenzene (concentration range 1 μg/kg-1,000 μg/kg)
- 2. PCB: six indicator PCB (concentration range  $1 \mu g/kg 10 \mu g/kg$ )
- PCDD/PCDF: 2,3,7,8-substituted congeners (concentration range 35 μg/kg-180 μg/kg)
- 4. dl-PCB: 12 dl-PCB (concentration range 170  $\mu$ g/kg-300  $\mu$ g/kg )
- 5. PBDE/PBB: PBDE and PBB-153 (concentration range 70 μg/kg -570 μg/kg)
- PFOS: polyfluoroalkyl substances (PFCAs, PFSAs, FOSA) incl. PFOS and FOSA (concentration range 125 μg/kg -320 μg/kg)
- PFAS: Mixture of perfluoroalkyl substances (Me-FOSA, Et- ME-FOSE, Et-FOSE; concentration range 630 μg/kg -1,260 μg/kg)

# Test samples in 2<sup>nd</sup> round (2012-2013)

#### Naturally contaminated test samples

- 1. Sediment: Marine sediment from the Netherlands
- 2. Fish: Pike-perch filet from the Netherlands
- 3. Mother's milk: Homogenized mother's milk from the Swedish mother milk bank in the Örebro region
- 4. Human blood serum: Pooled human blood serum of both occupationally exposed (professional ski wax technicians) and the general population
- 5. Air extract: Toluene extract of polyurethane foams (PUF), taken near a hazardous waste incinerator (HWI) and fortified with OCPs, PBDE and PFAS
- 6. Water: Surface water taken from Amsterdam harbour ("het IJ"), the Netherlands
- 7. Transformer oil: Dilution of an Aroclor 1254 oil.

### Preparation of water test sample





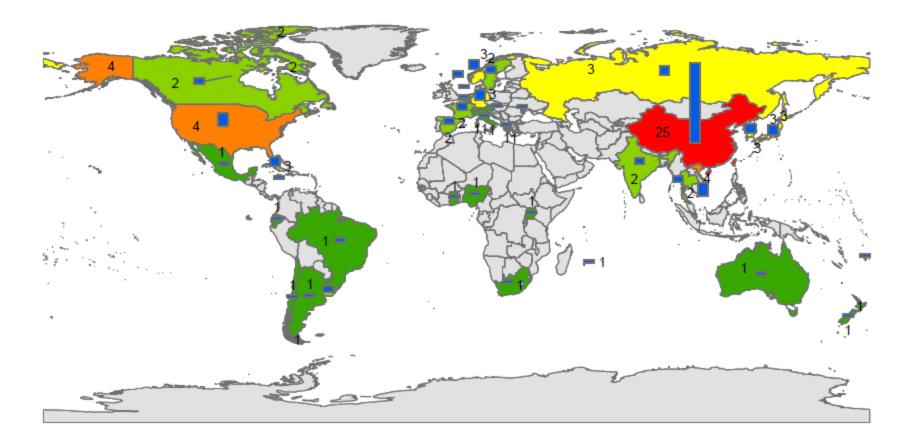
#### Preparation of fish test sample

#### Human milk test sample








### Final test vials







### Laboratories in 2<sup>nd</sup> Interlaboratory Assessment 2012/2013



| Region                     | Africa | Asia | CEE | GRULAC | WEOG | Total |
|----------------------------|--------|------|-----|--------|------|-------|
| No of Countries registered | 9      | 9    | 2   | 10     | 16   | 46    |
| No of Labs registered      | 12     | 45   | 4   | 14     | 31   | 106   |
| No of Labs with results    | 5      | 42   | 4   | 11     | 27   | 89    |

# Of the Asian labs: 25 from China

### 2<sup>nd</sup> Global Interlaboratory Assessment

Distribution of samples according to matrix and POP for analysis (2012-2013)

| Group   | Standard<br>solutions | Sediment | Fish | Human<br>milk | Air | Water | Human<br>serum | Trans-<br>former oil | Totals |
|---------|-----------------------|----------|------|---------------|-----|-------|----------------|----------------------|--------|
| ОСР     | 50                    | 27       | 36   | 21            | 23  | -     | -              | -                    | 157    |
| РСВ     | 47                    | 38       | 43   | 28            | 25  | -     | -              | 19                   | 200    |
| dl-POPs | 48                    | 34       | 41   | 29            | 37  | -     | -              | -                    | 189    |
| PBDE    | 42                    | 30       | 34   | 19            | 21  | -     | -              | -                    | 146    |
| PFAS    | 22                    | 18       | 19   | 8             | 8   | 30    | 8              | -                    | 113    |
| Totals  | 209                   | 147      | 173  | 105           | 114 | 30    | 8              | 19                   | 805    |

### Number of labs reporting OCPs per region

| Region | Total | Standard<br>solution | Sediment | Fish | Mothers'<br>milk | Air<br>extract |
|--------|-------|----------------------|----------|------|------------------|----------------|
| ASIA   | 25    | 24                   | 17       | 16   | 10               | 11             |
| WEOG   | 16    | 16                   | 13       | 14   | 9                | 8              |
| GRULAC | 9     | 9                    | 7        | 7    | 5                | 4              |
| AFRICA | 4     | 4                    | 2        | 4    | 2                | 2              |
| CEE    | 2     | 2                    | 2        | 2    | 1                | 2              |
| Total  | 56    | 55                   | 41       | 43   | 27               | 27             |

CEE = Central and Eastern Europe; WEOG = Western European and Other Groups

#### Number of labs reporting PCB per region

| Region | Total | Standard<br>solution | Sediment | Fish | Mothers'<br>milk | Air<br>extract | Transfor<br>mer oil |
|--------|-------|----------------------|----------|------|------------------|----------------|---------------------|
| ASIA   | 28    | 22                   | 18       | 20   | 14               | 15             | 10                  |
| WEOG   | 21    | 20                   | 15       | 17   | 12               | 14             | 7                   |
| GRULAC | 9     | 9                    | 8        | 6    | 5                | 3              | 2                   |
| AFRICA | 4     | 3                    | 2        | 4    | 2                | 2              | 1                   |
| CEE    | 3     | 2                    | 2        | 2    | 1                | 3              | 2                   |
| Total  | 65    | 56                   | 45       | 49   | 34               | 37             | 22                  |

### Number of labs reporting PCDD/PCDF per region

| Region | Total | Standard<br>solution | Sediment | Fish | Mothers'<br>milk | Air<br>extract |
|--------|-------|----------------------|----------|------|------------------|----------------|
| ASIA   | 31    | 27                   | 21       | 22   | 18               | 22             |
| WEOG   | 18    | 16                   | 12       | 13   | 10               | 13             |
| GRULAC | 2     | 2                    | 0        | 2    | 0                | 1              |
| AFRICA | 0     | 0                    | 0        | 0    | 0                | 0              |
| CEE    | 3     | 3                    | 3        | 3    | 1                | 3              |
| Total  | 54    | 48                   | 36       | 40   | 29               | 39             |

#### Number of labs reporting dl-PCB per region

| Region | Total | Standard<br>solution | Sediment | Fish | Mothers'<br>milk | Air<br>extract |
|--------|-------|----------------------|----------|------|------------------|----------------|
| ASIA   | 28    | 25                   | 20       | 25   | 20               | 18             |
| WEOG   | 21    | 18                   | 14       | 15   | 11               | 13             |
| GRULAC | 2     | 2                    | 0        | 2    | 0                | 1              |
| AFRICA | 0     | 0                    | 0        | 0    | 0                | 0              |
| CEE    | 3     | 3                    | 3        | 3    | 1                | 3              |
| Total  | 54    | 48                   | 37       | 45   | 32               | 35             |

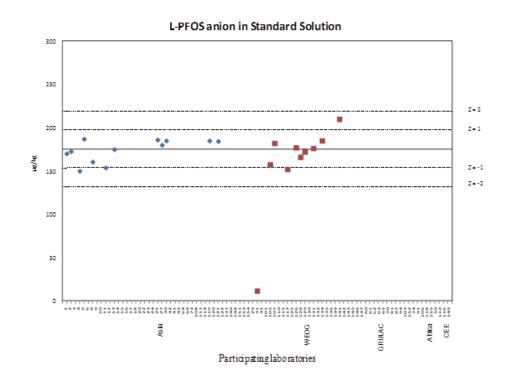
#### Number of labs reporting PBDE per region

| Region | Total | Standard<br>solution | Sediment | Fish | Mothers'<br>milk | Air<br>extract |
|--------|-------|----------------------|----------|------|------------------|----------------|
| ASIA   | 22    | 23                   | 15       | 22   | 13               | 10             |
| WEOG   | 18    | 16                   | 13       | 14   | 10               | 10             |
| GRULAC | 1     | 1                    | 1        | 1    | 1                | 1              |
| AFRICA | 1     | 1                    | 1        | 1    | 1                | 0              |
| CEE    | 2     | 2                    | 1        | 1    | 1                | 1              |
| Total  | 44    | 43                   | 31       | 39   | 26               | 22             |

### Number of labs reporting PFAS per region

| Region | Total | Standard<br>solution | Sediment | Fish | Mothers'<br>milk | Human<br>serum | Air<br>extract | Water |
|--------|-------|----------------------|----------|------|------------------|----------------|----------------|-------|
| ASIA   | 16    | 15                   | 13       | 12   | 6                | 7              | 7              | 13    |
| WEOG   | 15    | 11                   | 9        | 10   | 6                | 6              | 6              | 12    |
| GRULAC | 0     | 0                    | 0        | 0    | 0                | 0              | 0              | 0     |
| AFRICA | 0     | 0                    | 0        | 0    | 0                | 0              | 0              | 0     |
| CEE    | 0     | 0                    | 0        | 0    | 0                | 0              | 0              | 0     |
| Total  | 31    | 26                   | 22       | 22   | 12               | 13             | 13             | 25    |

Performance *per* group of POPs and test sample

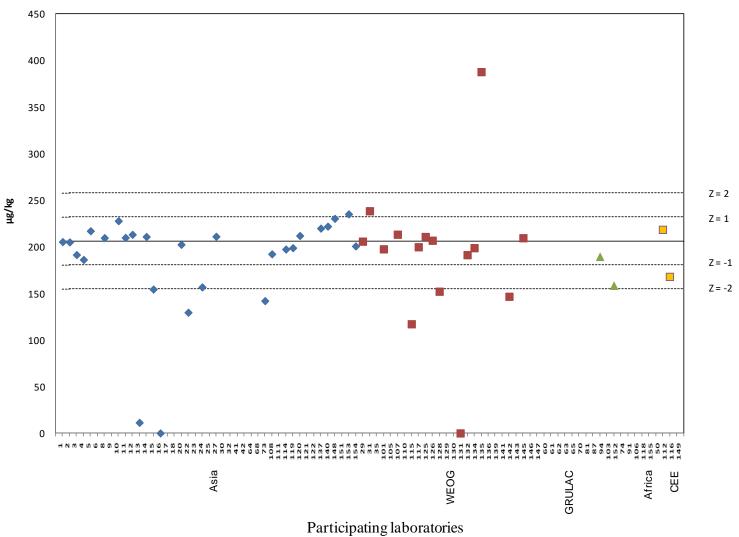

### Assessment according to ISO 17043

z-scores can be interpreted as follows:

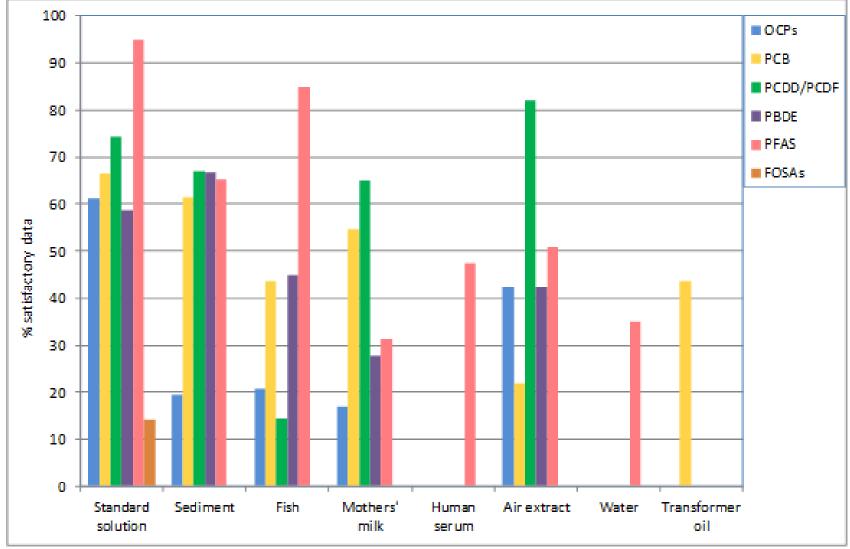
- |z| < 2 Satisfactory performance
- 2 < |z| < 3

• |z| > 3

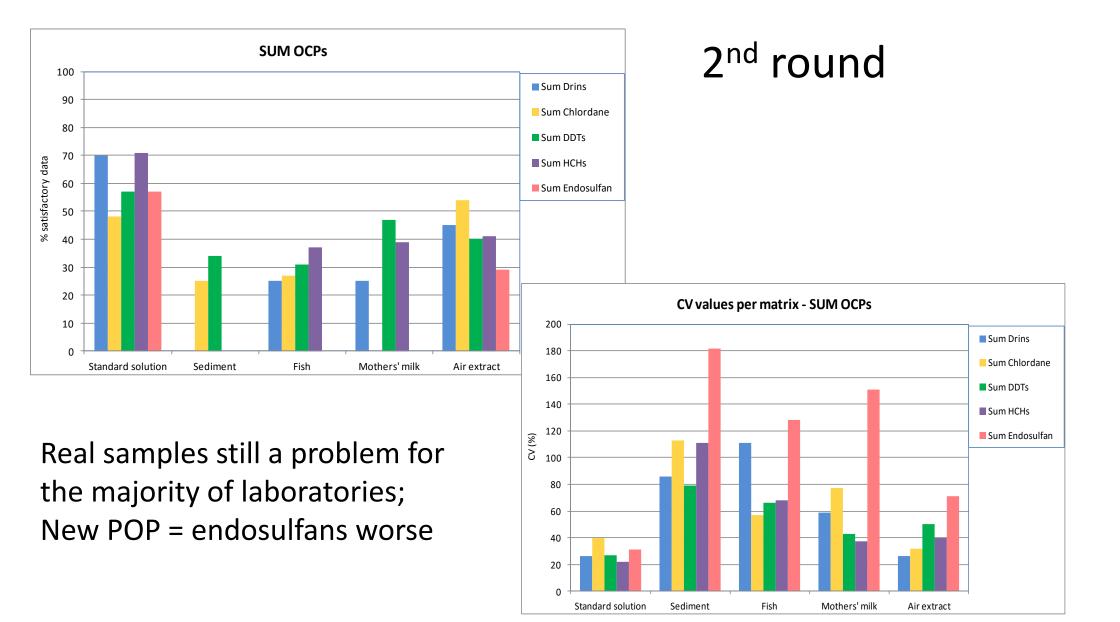
Questionable performance Unsatisfactory performance




Results of concentrations per analyte and matrix presented; ⇒ z-scores available for all laboratories


#### z = 12.5%

### PCDD/PCDF in standard solution


PCDD/PCDF TEQ in Standard Solution



#### Laboratories with satisfactory performance



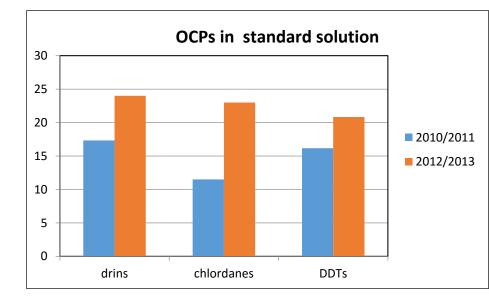
### Laboratories with satisfactory performance

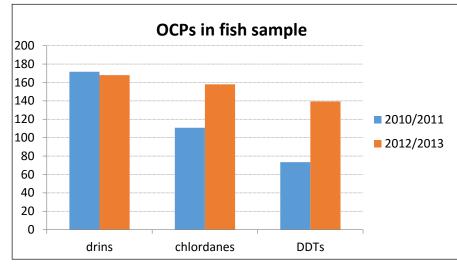


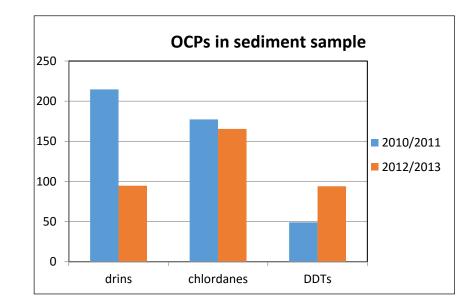

#### OCPs in air extract

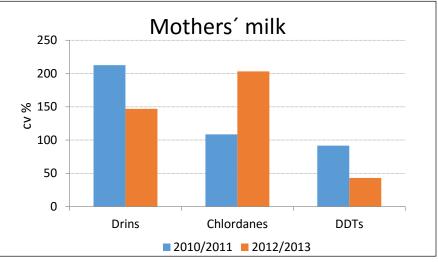
| Analyte         | n  | Between<br>Lab CV (%) | Inclusion<br>rate (%) |
|-----------------|----|-----------------------|-----------------------|
| Sum Drins       | 16 | 26                    | 62                    |
| Sum Chlordanes  | 22 | 32                    | 66                    |
| Sum DDTs        | 22 | 50                    | 73                    |
| Sum HCHs        | 18 | 40                    | 65                    |
| Sum Endosulfans | 12 | 71                    | 65                    |

|                 | % of the | % of z-scores | % of z-scores | % of z-scores  | % of z-<br>scores |
|-----------------|----------|---------------|---------------|----------------|-------------------|
| Analyte         | data     | z <2          | 3> z >2       | 6> z >3        | z >6              |
|                 | received | Satisfactory  | Questionable  | Unsatisfactory | Extreme           |
| Sum Drins       | 19       | 45            | 5             | 15             | 15                |
| Sum Chlordanes  | 23       | 54            | 4             | 13             | 21                |
| Sum DDTs        | 24       | 40            | 8             | 20             | 20                |
| Sum HCHs        | 21       | 41            | 9             | 14             | 18                |
| Sum Endosulfans | 13       | 29            | 0             | 21             | 36                |

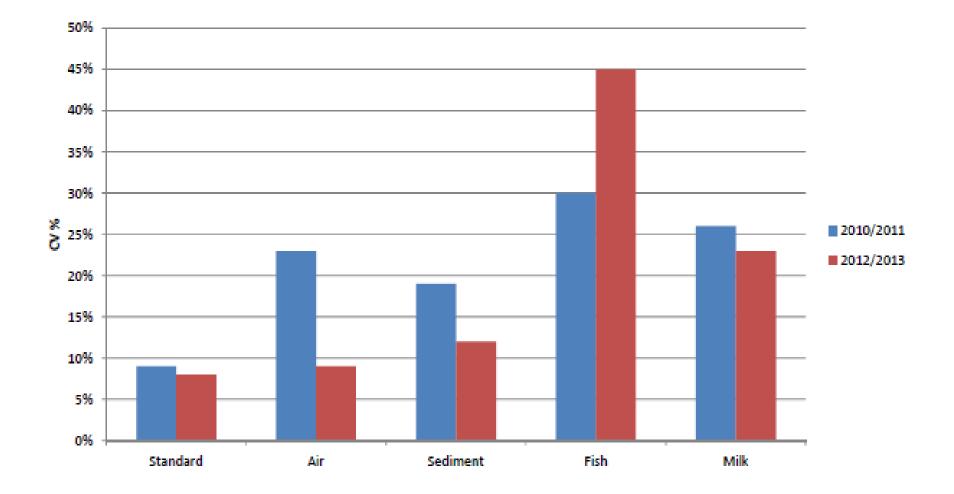

# Comparison 1<sup>st</sup> round vs. 2<sup>nd</sup> round





solution

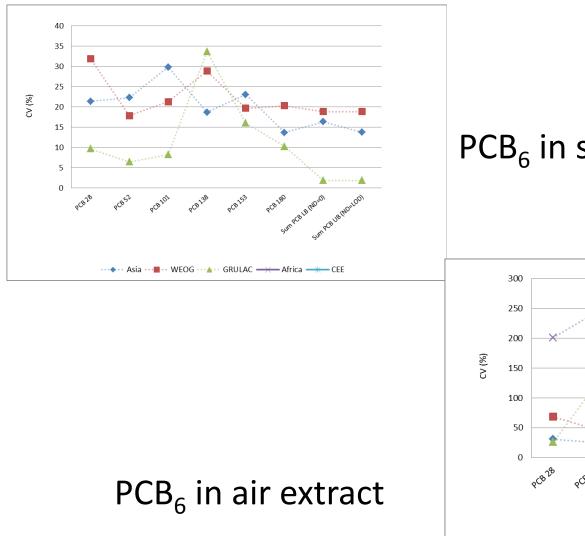

2010/2011

## Comparison 1<sup>st</sup> round vs. 2<sup>nd</sup> round

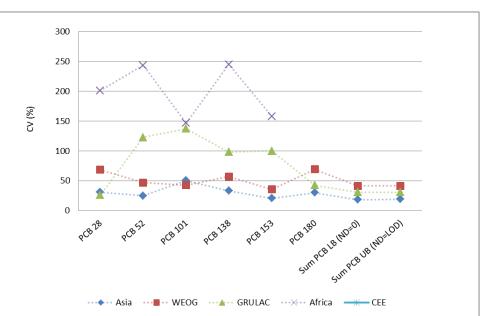







### Comparison PCDD/PCDF analysis: 1<sup>st</sup> round vs. 2<sup>nd</sup> round




Regional performance per group of POPs and test sample

# Regional performance for PCB<sub>6</sub>



#### PCB<sub>6</sub> in standard solution



# 2<sup>nd</sup> Interlaboratory assessment on POPs

| Region                         | # Labs | Results S | % S   | Results Q | Results U |
|--------------------------------|--------|-----------|-------|-----------|-----------|
| Africa                         | 5      | 11        | 0.3 % | 13        | 67        |
| Asia-Pacific                   | 42     | 3,691     | 52 %  | 474       | 878       |
| Central + Eastern Europe       | 4      | 296       | 4.2 % | 57        | 89        |
| Latin America and<br>Caribbean | 10     | 287       | 4.1 % | 60        | 164       |
| Western Europe and<br>Others   | 27     | 2,752     | 39 %  | 420       | 535       |
| Total                          | 89     | 7,035     |       | 1,024     | 1,801     |

Approx. 10,000 z-scores generated

|z| < 2</th>Satisfactory performanceS2 < |z| < 3</td>Questionable performanceQ|z| > 3Unsatisfactory performanceU

# African laboratories' performance

| Lab  | Total<br>reported | Satis-<br>factory | Question-<br>able | Unsatis-<br>factory | Empty cells |
|------|-------------------|-------------------|-------------------|---------------------|-------------|
| L074 | 68                | 1                 | -                 | 67                  | 79          |
| L091 | 34                | 5                 | 7                 | 22                  | 62          |
| L106 | 4                 | 1                 | -                 | 3                   | 46          |
| L118 | 28                | -                 | -                 | 28                  | 22          |
| L155 | 25                | 4                 | 6                 | 15                  | 1           |

African laboratories (GHA, MUS, NGA, UGA, ZAF) reported for OCPs (4 labs), indicator PCB (4 labs) and 1 lab for PBDE

# Conclusions from 2<sup>nd</sup> interlabortory assessment

- The degree of participation (105 laboratories from 48 countries) showed high interest of laboratories to participate in this assessment;
- New POPs added to the scheme of the initial twelve groups of POPs, and new matrices;
- High interest for capacity-building resulted in a wealth of information on POP analysis and huge data set from which the laboratories can evaluate their performance;
- Improvement in performance of initial POPs not satisfactory for UNEP criteria;
- Results for new POPs PBDE, PFAS were promising although limited participation;
- Capacity for analysis of new POPs is located in Asian and WEOG regions;
- For the analysis of the group of PFAS compounds, LC/MS/MS is needed;
- None of the 105 participating laboratories were able to carry out all analyses that were offered in this assessment.

## Acknowledgement

**UNEP** thanks

- All laboratories participating in this interlaboratory assessment;
- Wellington Laboratories (Guelph, ON, Canada) and Cambridge Isotope Laboratories (Andover, MA, U.S.A.) for preparing the test solutions;
- Dr. Wim Cofino for performing the statistical analysis;
- Secretariat of Basel, Rotterdam, and Stockholm conventions for fruitful cooperation;
- MTM Center, Örebro University (Sweden) and IVM VU University, Amsterdam (the Netherlands) for coordinating the assessment;
- CVUA, EURL and UNEP/WHO Reference Laboratory, Freiburg (Germany) for organizing the workshop and the training;
- Jost Dittkrist and Xinyang Li, consultant and intern at Chemicals Branch for assisting with the organization of the Freiburg workshops.

This project was funded by:

The European Union through ENRTP project "Second Worldwide UNEP Interlaboratory Study for Persistent Organic Pollutants", and

The Global Environment Facility through project "Establishing the Tools and Methods to Include the Nine New POPs into the Global Monitoring Plan"



