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PREFACE 

Under the Mediterranean Action Plan developed by the United Nations Environment 
Programme, the Co-ordinated Mediterranean Pollution Monitoring and Research Programme was 
established. As part of this programme, an FAO(GFCM)/UNEF Joint Co-ordinated Project on 
Pollution in the Mediterranean was initiated. The project aims at organizing baseline 
studies and monitoring of metals, particularly mercury, and of DOT, PCBs and other 
chlorinated hydrocarbons, in marine organisms, and at establishing research projects on 
the effects of pollutants on aquatic organisms and ecosystems. 

Further to a Manual on Sampling and Analyses of Biological Material (FAD Fish.Tech. 
Pap. 158), this Manual on Statistical Tests has been prepared to assist laboratories 
participating in the FAD/UNEP project in proper planning of monitoring programmes and 
research projects, and to facilitate the evaluation of data and results obtained. However, 
although the examples in the manual were chosen to specifically suit the FAD/UNEP project, 
this manual is expected to be of use to all laboratories involved in analysing pollution 
levels and measuring effects of pollution on aquatic life. 

The manual was prepared by Dr. F. Môller, Milano. Ors. M. Bernhard, Fiascherino, 
and W. Besch, Karisruhe, assisted in the design of the examples given. Final editing was 
carried out by Dr. H. Naeve, Fishery Resources and Environment Division, FAD. The views 
expressed in this manual are those of the author and do not necessarily represent the 
views of either FAD or UNEP. 
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TESTS FOR POLLUTION MONITORING PROGRAMMES 

1.1 Introduction 

Statistical data are observations about characteristics or attributes of individuals 
(e.g. Hg concentration, weight of specimens). 	The group of individuals under study is 
called a (statistical) population. 	Such a population could be all Mullus barbatus of 
a given area. If the frequency distribution of the attributes of the population is known, 
it is possible to describe it by a density function (e.g. the normal distribution or dis-
tribution of Gauss), which is an analytical function defined by a number of parameters. 

The entire population is often too large to be studied as a whole or perhaps can 
only be defined hypothetically. It is therefore more convenient to study a subset of the 
population. Such a subset is known as a sample. The goal of sampling is to get infor-
mation about the -Frequency distribution of the population, or more precisely, about the 
population parameters. For this reason sample functions are built to estimate the popu- 
lation parameters. 	These estimates are also known as sample statistics or simply 
statistics. 	If the investigation is based on a sample, the estimates will depend on the 
particular sample chosen; a different value may be obtained, if a different sample is 
selected. 	This variation in the values from sample to sample is known as sampling 
variability. 	Its magnitude can be ascertained by the theory of probability. Generally, 
the difference between a statistic and the true population value, i.e. the sampling error, 
increases as more factors influence the statistic. Factors which influence the statistics 
may be the age of specimen, location and time of sampling, etc. The main task of the 
research worker is, therefore, to identify the possible factors, and the task of the 
statistician to establish the amplitude of the factors in terms of their variability or 
error. If an effective estimation of the frequency distribution is achieved, the form 
of the density function is known. If it is not, one has to decide on the form of the 
function. This problem is known as specification and does not have an easy solution. 
Sometimes it can be solved from theoretical considerations of how the frequency distri-
bution is generated, but more often the distribution form is disregarded, concentrating 
the attention on a few parameters to which most distribution parameters are strictly 
related. 

1.2 Population Parameters 

A population is designated univariate if only one character (y) is considered, and 
multivariate if more than one character (x,y) is considered. The most comon univariate 
parameters are the mean p as a location measure, the-variance a2 , the standard deviation 
a and the coefficient of variation V = IOU as dispersion measures 

The most important multivariate parameter is the covariance a> , as a measure of 
correlation. 

For a finite population we could calculate the parameters if we had measurements for 
all the individuals (specimens) in the population. In practice this is generally impossible, 
certainly in the case of destructive sampling, so that we can only expect a true population. 
We define expected value of any quantity its average value, averaged over the entire 
population. 	- 



Even though the exact frequency distribution is unknown, the knowledge of the mean 
and the variance is sufficient to make precise statements about univariate frequency 
distributions with the use of Tchebycheff's inequality: 

{ jy - 	< Xa } > i - 

which gives us a lower limit F { } to the amount of frequency lying within a range of 
± Xa on either side of the mean. If the population is unimodal, i.e. it has only one 
mode (= u 0 ), which is the most frequent value in the distribution, then the inequality 
can he improved so that the lower limit to the amount of frequency lying within a range 
of ± XCI O ,(c 	c + (p 	p 0 ) 2 ), on either. side of the mode, is increased to I 

- 

This inequality is due to Camp-Meidell. 

In Table I we compare the frequency area of a normal distribution within the intervals 
of ± Xa with the above inequalities. 

Table I 
Frequency area of normal distributions 

Normal 
Inequalities o -F: 

Tchebycheff Camp-Meidell 
distribution for any for unimodal 

distribution distributions 

I .583 0 .556 

2 .954 .75 .889 

3 .997 .889 .95I 

4 >.999 .938 .972 

It can be seen that estimates of the frequency by the inequalities of Tchebycheff 
and Camp-Meidell are fairly good for values of A larger than 3. This means, if large 
differences between sample values or functions are observed, the conclusions are sig-
nificant even if the frequency function is not known. 

When two or more variables are involved the main interest lies in the joint dis-
tribution of the variables. We may describe this as the problem of statistical relationship 
for which a useful distinction may be made. We may be interested either in the inter-
dependence between a number of the variables (not necessarily all), or in the dependence 
of one or more variables upon the others, which, and this is a fundamental difference, 
are often under control of the experimenter. This means that the levels of the dependent 
variable (species, time and area of sampling, etc.) can be chosen by the experimenter. 

We can say that the study of interdependence leads to the theory of correlation and 
the study of dependence to the theory of regression. 
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1.3 Simple Sample Statistics 

Characteristics, parameters or density distributions of the population can be estimated 
in several ways. 	The most common is to estimate the parameters through sample statistics. 
Of course the estimate might differ from the parameter in any particular case, and hence 
there is a margin of uncertainty. The extent of this uncertainty can be expressed in terms 
of the sampling variance of the estimator, which is the variance of the distribution func-
tion of the estimates, i.e. the frequency distribution of the estimates of all possible 
samples of the same size, which can be drawn from one population. 	In other words, the 
sampling variance is a measure of theprecisiono -F the estimates. 

If we denote the population parameter by 0, then any interval which specifies two 
statistics, T 1  and T 2 , such that the probability that the population parameter lies within 
the interval (i, T 2 ) is I -a, where ct is a preassigned positive constant ( 1), then 
the interval (i,  T 2 ) is said to provide an interval estimate, or a confidence interval 
for the parameter 8 at the confidence level I - ct. 	On the other hand, if L 1  and L 2  
( L 1 ) are two sample functions such that the probability that the interval (L 1 ,L 2 ) will 
include at least IOOY% of the population, with I a positive constant ( 1), is equal to 
I - a, then the limits L 1  and L 2  are called the 100 1% tolerance limits for the population 
at the confidence level of I -a. 

Whereas consistent estimates of parameters can generally be given without reference to 
the frequency distribution of the population, exact confidence and tolerance limits cannot 
be evaluated without knowing the population or parent distribution. In this event, 
distribution free methods can be used. If order characteristics of the population, like 
the median or the range (not parameters in the sense previously defined) are to be esti-
mated, then non-parametric methods can solve the problem. It is even possible to esti-
mate some parameters by non-parametric methods. 

In the following we will confine ourselves to the estimation of problems which can arise 
with the monitoring project . The population mean i is estimated by the sample mean: 

- 	1 ,  
y = —y n 

hence, the sample mean is itself a statistic. The sampling variance of this statistic is 
measured by: 

2 
2 = 
y 	n 

Its square root known as the standard error, a _ , should not be confused with the standard 
deviation cy. 	 y 

The population variance a2  is estimated by the statistic (unbiased estimate) 

= 	(y 

11 Examples for all discussed statistics can be found in Section 1.7 
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The numerator of the variance, (y•_)2 , is referred to as the sums of squares (SS), 
and the ratio of SS with the degrees o -Ffreedom OF = n - 1), as mean squares (MS). 	An 
approximation of s, very useful for small samples, is the range: R = max-min observed 
value. 

The estimate of the covariance is given by: 

5 xy 	= 	(x - )(y -  

and of the linear correlation coefficient, by: 

5 

r xy 
= 

5 5 
xy 

The sampling variance and the correlation coefficient need the knowledge of higher 
order moments of the population distribution. Simple -formulas are available only if 
the population is normal or at least approximately normal (see also Section 2.4) 

The variance of s 2 , with normal parent distribution, is: 	of s it is: 
(1-p2)2 	

n 	2n 
and of r n 

1.4 Composite Sample Statistics 

The scope of sampling is the estimation of the population parameters with the greatest 
accuracy possible. It is possible to increase the efficiency of estimations by a convenient 
sampling plan that evaluates independently different factors at different levels which may 
influence observations about individuals. This influence is called the effect of the factor 
level. Levels are the different values which each factor can assume, e.g. if one factor is 
time, the different dates are the levels. As a consequence, besides a smaller sampling 
variance, information about the importance of the -factors in terms of variability, measured 
by their contribution to the total variance, can be obtained. The contributions to the 
total variance are estimated by analyses of variance (ANOVA). 

The levels of the factors can be fixed or random. In the first case the main interest 
lies in estimating and testing hypotheses about (i.e. inference) the effects of the factor levels 
in the model. These effects are what we call fixed effects. In the second case the levels 
are thought to be a random sample out of a theoretical population of levels and the prime 
interest lies in estimating the variances of this population. Effects of this nature are 
called random effects and the variances associated with random effects, variance components. 
In considering the difference between fixed and random models, the important question is 
that of inference: when inferences are going to be confined to the effects in the model, 
the effects are considered fixed; when inferences will be made about a population of 
effects from which those in the data are considered to be a random sample, then the effects 
are considered as random. 

For any balanced random model the method of estimating variance components relies on 
the MS of the ANOVA for the fixed effects model. 

For unbalanced data there are several methods each of which simplifies to the method 
used for balanced data. 
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1.4.1 One factor models 

One way of obtaining composite samples is that to consider one factor with p levels 
.O. .0).  For each level a sample of measurements on n1 (i = 1. .p) individuals is 

obtained. The result of such a sampling design can be summarized in a two way table, 
where also the fundamental sample functions are reported (Table II). 

Table II 

A one factor sampling plan 

Factor levels Oj 
Samples Overall =1 	i=p i ... 

pi 
I 

= 	 :: 

1 in 1  

Number of individuals n n r n 	= per sample 	n1  1 p 1 

Sample mean 	y y y 	=- 

Sample SS SS(c 1 ) ..... SS(c) SS(c)= 	SS(c) 

Sarrple variance 	s 
1 

= 	-i-- SS(c) - c 	n 	p 1 p 

The model of such a design can be written as follows: 

1 	= 	I ... p 

	

y 	= 	1 + 0. + c. I ij 	 1 	JJ 	- 
j 	- I . . . n 1  

where Cik  indicates the error or the residual variation term. That means if the factor 
had not any influence on the observations then 6i = 0 for all I and the expected value 
of y1  would be the overall mean ji. If it had, then for the ith  level the expected 
value 	of Yij  would be P + O. 	The difference between the observation Yij  and the 
expected value 	p + 0 1 is the error or residual term, i.e. yij  - (11+0 1 ) = 

If homoscedasticity (i.e. if all variances 4 do not differ significantly between 
each other: tests of Bartlett, Cochran, Scheff) can be assumed, a pooled estimate of 
the population variance between individuals within each sample can be obtained by the MS: 

2 	
E (n1_1)4 	SS(c) 

Sc 
= 	ni - p 	n - p 
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This MS is often called the residual or the within (samples) or the error MS, and it 
is an estimate of the population error variance 

On the other hand, considering only the p sample means ç' we then obtain the 
SS due to the factor after eliminating the influence due to the mean 1.1: 

s (e j 10= 

MS(O.jp)  

This MS is thus a measure of the influence of the factor, and it is an estimate of: 

a 2  + 	n O 
C 	p - i 	i 1 

in the fixed effects model, or 

+ n 1  

in the random effects model, where 
n. 

1 	1 

	

n1 	
= 	p-i 	- 	n 

or n 1  = _- = m, if all n i  are equal, n i  = m. 	CF indicates the variance associated with 

the factor. 

Usually the results of such an analysis are summarized in a table, called analysis of 
variance (ANOVA) of the model 11+O 1 +c, like Table III, where E[MS] stands for expected 

	

MS. It is now possible to compare 	MS(e 1  I ii) with the residual MS by the F-test, 
with p-i and n-p degrees of freedom (OF): 

MS (0. i) 1 

	

F p _ i,n _ p 	= 	S2 
C 

which enables us to decide, at a given level of significance, if the effect of the factor 
affects the sample means. 

Now we have two possibilities: 

Ci) The means are not significantly different 
(ii) The means are significantly different (*). 

(*) If the means are significantly different, it may be that in one sample there are some observations 
which differ greatly from the others. The problem of deciding whether one or more of 
a set of observations has come from a different population from that generating the 
other observations, leading thus to different means faces every practical statistician, 
and perhaps, indeed, most practical scientists. It is the problem of outlying observa- 
tions or outliers (see Chapter 2.6.1). Sometimes it is possible to replace the value 
with a corrected value or to repeat the observation. If no reason for the unusual 
value can be found, the problem is more difficult and no unique solution can be sugges- 
ted, but the one to eliminate observations in the statistical analysis and to report 
them along with the statistical analysis. This allows the reader of the report to 
judge for himself; if he wishes he can replace the outliers and rerun the analysis. 
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Table III 

ANOVA of model 

Source of 
variation 

DF MS 
E{MS} 

Expected MS 

Mean 55(1j) = n 2  I 

zo 	Factor SS(0. p-I MS(O. 	p) a2 	+ n 1  c4 
(I after p) 

Residual SS(c) n-p MS(c) 

TOTAL: SS n 

Under the first circumstance, the population mean can be estimated directly by 
with a sampling (standard) error of: 

S E: 
5- - 

Under the second circumstance, the estimation of a unique mean is arbitrary if the 
frequency N i of the individuals of the population subject to the single levels of the 
factor are not known. If they are, or can be guessed through the sample, then the 
estimation of the mean is obtained by: 

= 	N.. 	with 	N = 	N. 

If the sample frequencies can be supported to be proportional to the analogous in 
the population, then 7' reduces to 

The standard error of 	for N i >> n. is then: 

F =0. 

y 
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In the case of random effects models, if the means are not significantly dif-Ferent 
may be put equal to zero; otherwise it can be estimated solving the system: 

 

{ MS(O.lu) = 

MS(c) 	= 

+ n 1  G 

CF 

Hence. 

= S 	= 
Ms(e. I 	- MS(c) 

f T  

1.4.2 Two factor nested model 

The extension of the one factor model includes one or more other factors. 	We will 
briefly discuss only the situation of one more factor, since all other and more complex 
designs are based on these. 	We restrict ourselves to the situation of a two-way nested 
design. 	This is obtained when we consider one factor with p levels as for the single 
factor design, and for each level a second factor at q i  levels. 

The n i  observations of the sample for the ith level of the first factor are classi-
fied in q 1  sub-samples, with frequencies 	ij'  j = I ... q. E nij =n. In accordance with 
the notational convention the original frequencies n i  will i 	now be replaced by n. 

Such a classification is called a two-way nested or hierarchical classification, which 
means that the classification of the individuals is nested within the samples obtained for 
the different factor levels. 

The model is now: 	
= 1... 

	

YijK = 	+ 0i + 0ji + C 	{ 
	q 	 (1.-2) 

ij 

where O specifies the effect of the first factor and 8j(i)  that one of the second nested 
within the first. 

The estimate of the mean is readily obtained if the population frequencies are known 
or estimable through the sample frequencies: 

- 	1 	- 	I 	- 
y 	= 	- 	N.. y. . 	or 	- 	n.. y.. 

N 	13 13 	n 	ij ij 

The MS and expected MS due to the factors and the residual are obtainable as: 



MS(O.) 	
- 	1 

	

1 	- 	- 	n. ; 	E[MS(O.)] = a2  + n 11a 1  + n 1aj 

	

MS(O 	 -..2 	
E[MS(O 	)] = a2  + n' a 2 	(1+3) 

	

j  .)= 	- (i) 	Eq. - 	Y±.) n 	j(i) 	c 	II II 

	

a2 	
= 

	

C 	n - Eq. 

with, 	 q1  

- 	I 	
- 	n j  

nil 	
- 	p - I 	n. 	n.. 

q i  

P 	. 	1j 
nt 	

= 	I 	
•• 	_j 

II 	Eq1-p 	i 	
ni. 

(1 

' 2 
L n. 

1• 
1 1 n = n.. 	- _____ I p - I n.. 

If n 	= constant = m, and q i  = constant = q, then we have n 11  = nj 1  = m and 

= mq. 

Hypotheses about the signi-Picance of the two factors can be tested by the ratios: 

MS(O.) 	MS(O. . ) 

MS(O.) 	and 

1.5 Regression or covariance models 

Another way to obtain more information out of a set of observations, is to consider 
the dependence of the variable studied, y,  upon one or more other variables, x.w, 
which are concomitant to the first. 	This leads to the regression analysis and the 
analysis of covariance which will only be briefly outlined. 
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The general model is that of an ANOVA which will be broadened to: 

= 

	

 
3 	

p 	
1 

+ 0. 	
1 

+ 	x.
3 
 + C 13 
	

(1 .. 	 .5 -1) 

where Xjj are the values of the concomitant variable, and 	is a measure c -F the 
dependence of y on x (regression coefficient). 	This model can be thought of 
as a synthesis of two models, viz, the one-way classification: 

	

Y 1j 	= 	i + 
0 
i  +ij 	

(1.5-2) 

and the simple regression model: 

	

y ij 	= 	11 + ~X ij + Eij  

for which the ANOVA of Table ri can be considered (Searle, 1971). 

The left half of the table leads to the test of the hypothesis whether, after having 
estimated p and O, the regression on x indicated by introduced in the first 
model 0 .5- 1) is significant or not. 

The right half of the table leads to the test of the hypothesis whether the factor 
effects 01  are significant after having removed the influence of p and 	p 

Generalizations of model (1.5- 1) consider different regression coefficients ai  instead 
of only one for all factor levels. This is the so-called intraclass regression model. In 
that case SS(Ip ,0 ) with I OF must he substituted by: 

ss (.Ip,0.) 	
[ 

(x 	-( 	
2 	

with p.OFij  

i 

and SS (Ii-') by: 

2 
[(x.. 

- 	
-

with (p-1),OF. Ss 
( '.II'-') 	= 	

13 

1 	(x ii  

Hence, the OF for the residual SS &re reduced to n - 2p 
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Table IV 

ANOVA for the regression model - 
degrees of freedom in brackets [DF] 

MODELS 
I1.1,e i  

SS (p) 	= n 2  [1] 

SS 	= ( 2 n 	[p-I] ss (eli.') 	= { 	(y1. -)(x.. -)} 
2 

 
2 XY (x13

..-) 

sS (i 3 O.) 	= n. 	[p] SS (p,) 	= Ss (ii)  + Ss (p)  

SS (O.B) 	= SS (0) + 
SS 	(8[i3O.) 	

= 
I [1] 

YX 	(x .. _ . ) 2  SS (I ,0 ) - SS (Iu) [p-I] 

Residual SS 	= [n-p-I] 

TOTAL: SS 	= y. [n] 

1.6 The problem of the sample size 

1.6.1 One sample 

In determining the sample size one has to make statements about: 

The precision 6 of the estimates 

The confidence level 1-ct, with which decisions are taken. 

Hence, if •(x)  is the true and unknown population parameter, f(x) its estimate obtained 
through a sample, above statements can be summarized as: 

P [I f(x) - (x) 1< c] = 1-a. 	 (1.6- 1) 

This means that the probability to obtain distances of deviations between the estimate and the true value 
smaller than c, is 1-ct. 	In general to solve (1.6 - 1) the frequency distribution of the 
population must be known or assumed. If the estimate is the mean R or a proportion 
of the sample, then (1.6 - 1) can be easily solved, in most cases, even without knowing 
the exact distribution. In case of the mean, we have Student's test (2.3-2): 
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t= 
 _____ 

n (1 .6-2) 

where the -Factor -!!1  is the -Finite population correction of the variance and can be omitted 
if N is much larger than the expected sample size. f(1.6 - 1) clearly e= -p, so that on 
taking the critical t value at the confidence level of 1-L, i.e. t 1 c, we have: 

 

C 	= 	O) (1 .6-3) 

for a finite population, or 

5 
C 	= t 

(i - I) 	/T;•-  
(1 .6-'+) 

for large populations or universe. 

n = 

for finite populations, or 

n 	= 

Hence we have: 

2 

2 
C 

1+ 	

[t (l)  s1 2  

t(1ch 	
2 

2' 
C 

for large populations or universe. 

If neither t 	nor a are known in advance they must be guessed. This is best done 
by guessing the (1 	ratio wc/t 	which is the desired standard error of the 
estimate 	, obtaining n=()2. 	(1-f The sample variance 2  can only be estimated from 
previous sampling of a sImilar or related population, or by intelligent guess-work (Cochran, 
1960). 	In practice informations about s 2  are obtained by a pilot sampling. 	Then t (  

1 
can be substituted by the normal approximation t 	= z (1 a ) /: E. or much easier 
by the critical value of t for the smallest 	2 	2 	n-2 

sample size expected, or iteratively. 

1.6.2 Two samples 

We consider now the case of determining the sizes of two samples for which the means 
should be compared by the test (2.3- 9): 

t =  
n j  + n2 - 2 

- x2 

/(n 1-1)5 + (n2-1)s 	12 

n 1 +n 2  -2 	n 1  n2 

(1 .6-7) 
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11 

1.7 Examples 

In the monitoring pilot projects, four different sources of variation (i.e. factors) 
can be distinguished (Bernhard, 1976): 

 Variability of the chemical analytical method 
(between determinations) 

 Variability of the chemical pretreatment 
(between pretreatments) 

 Variability caused by intrinsic 	(genetic) 
biological factors (between "samples", 
same site and same date) 

 Variability caused by environmental factors 
(between sites and date 	or between dates, 
same sites) 

Now suppose we consider nine samples of Mullus bczrbatus, which differ from 
environmental factors, i.e. they differ with sites and time -factor 4 (Stöpploretal.,i.pr.). 

Each sample is composed of a number of individuals (fishes) which differ from 
factor 3. 

For all individuals of the first sample (see Table V) two pretreatments have been 
performed with two determinations. 

For all other samples (2 to 9) data for only one pretreatment with two determinations 
are given. There is only one fish in sample No.2 with a missing observation. 

For all samples, except No.4, lengths and weights are given for each fish. 

The resulting observations do not fit in a balanced scheme, since not all samples 
have data for all factor levels. 

Although nowadays the high-speed computer can analyse these models, though with 
some approximations, we suggest for the sake of clearness, to follow a stepwise analysis, 
treating at the beginning all samples separately. 
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Table V 

Concentrations YijhK of a contaminant, lengths and 
weights for 9 	samples of 1frtllus barbatus 

ijhk 

Pretreatment h=1 Pretreatment h=2 Sample Individual x ij 
Wjj 

Number Number length weight Determination Determination 
k=1 k=2 k=1 	Ic=2  

01 0.037 0.039 0.046 0.044 15.3 75.19 
02 0.266 0.264 0.270 0.267 13.3 47.61 
03 0.135 0.139 0.159 0.159 10.8 23.77 
04 0.095 0.100 0.112 0.109 11.5 27.44 

05 0.101 0.102 0.116 0.114 11.3 28.24 
06 0.213 0.213 0.215 0.215 12.3 34.24 
07 0.228 0.203 0.219 0.219 11.9 29.05 
08 0.167 0.185 0.186 0.186 13.6 50.01 
09 0.766 0.750 0.686 0.678 12.8 37.01 
10 0.054 0.054 0.a46 0.040 14.2 55.66 

01 0.252 0.246 16.0 73.58 
02 0.264 0.258 13.0 40.99 
03 0.149 0.146 14.3 52.03 
04 0.308 13.6 45.91 

2 05 0.271 0.247 12.8 34.43 
06 0.315 0.305 12.5 35.04 
07 0.163 0.152 13.5 42.57 
08 0.380 0.379 14.2 51.96 
09 0.109 0.103 13.0 41.72 
10 0.072 0.072 12.3 36.53 

01 0.228 0.224 14.0 63.3 
02 0.243 0.228 14.5 59.6 

3 03 0.209 0.211 14.2 57.9 
04 0.184 0.184 13.2 46.8 
05 0.168 0.164 14.3 57.9 

01 0.066 0.062 
02 0.081 0.081 
03 0.073 0.071 
04 0.071 0.074 

4 05 0.058 0.059 
06 0.048 0.049 
07 0.045 0.045 
08 0.088 0.086 
09 0.118 0.125 
10 0.045 0.041 

01 0.062 0.062 16.5 67.0 
02 0.051 0.057 14.0 46.23 

5 03 0.043 0.044 15.0 53.5 
04 0.081 0.082 15.0 56.1 
05 0.118 0.122 15.0 59.59 

ContLnue.d 
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ijhK 
Sample Individual Xi. WI  Pretreatment h=1 Pretreatment h=2 
Number Number . 

- Deterr,u nation Determination length weight 
- k=1 	k=2 k=1 - k=2  

01 0.051 0.051 

- 

13.0 31.93 
02 0.096 0.097 13.0 32.15 

6 03 0.144 0.167 14.5 43.39 
04 0.218 0.202 14.5 55.16 
05 0.102 0.104 14.5 38.61 

01 0.331 0.331 11.0 19.49 
02 0.280 0.287 10.5 17.34 

7 03 0.173 0.180 12.5 27.07 
04 0.136 0.132 12.0 25.59 
05 0.115 0.127 13.5 32.77 

01 0.420 0.410 16.0 73.40 
02 0.557 0.555 16.0 72.00 
03 0.115 0.110 17.0 92.42 
04 0.179 0.186 11.0 26.67 

8 05 0.168 0.167 11.0 24.29 
06 0.154 0.154 10.5 19.18 
07 0.089 0.102 11.0 18.71 
08 0.269 0.166 14.0 50.57 
09 0.258 0.262 11.5 25.64 
10 0.257 0.242 16.0 85.47 

01 0.085 0.083 10.0 20.00 
02 0.147 0.147 8.5 10.90 
03 0.092 0.092 10.0 17.26 
04 0.189 0.192 9.0 12.59 
05 0.050 0.052 10.5 22.05 
06 0.030 0.030 8.0 9.94 
07 0.027 0.021 10.5 25.74 
08 0.047 0.054 10.0 21.29 
09 0.024 0.024 9.5 17.52 

9 10 0.116 0.123 9.5 16.61 
11 0.046 0.050 9.0 12.01 
12 0.053 0.054 9.0 15.91 
13 0.086 0.086 9.0 15.91 
14 0.060 0.064 10.5 19.24 
15 0.077 0.079 12.5 35.21 
16 0.049 0.050 10.0 18.06 
17 0.164 0.173 9.5 13.46 
18 0.073 0.078 9.5 14.64 
19 0.087 0.091 12.0 29.27 
20 0.054 0.055 9.5 15.05 
21 0.092 0.096 10.5 23.00 
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1.7.1 Example of a one-factor model 

We consider sample No.2 (Table V) of p= 10 individuals = specimen), ignoring lengths 
and weights, and set up Table VI following Table II determining all parameters. Since for 
nine individuals we have only two observations (= determinations), evidently the sample SS 
is equal to the sample variance. In the case of the fourth level (= sper.imen) we have only 
one determination so that the sample variance cannot be evaluated. Therefore, this speci-
men does not bring any contribution to the error or residual MS, which in this case is 
equal to the determination MS. 

Homoscedasticity is tested by Cochran's test (2.4_12): 
32 	

28.8 = 	= 	= 	0.63 
45.75 

I 

At the 5% significance level, we have from Figure B g9 ' 2L95) = .64 which is larger 
than the observed value 	hence, with some optimism, the 	variances can be con- 
sidered as homogeneous. This is due especially to the fact that all variances of Table VI 
have only 1 OF. 

Table VI 

A one factor (= individuals) sampling plan 

Factor 	levels 	i 

yij 
1 2 3 f 	4 

( 	

5 6 7 8 9 10 
Overall 

 

= 1 0.252 0.264 0.149 0.30 0.271 0.315 0.163 0.380 0.109 0.072 

j =2 0.246 0.258 0.146 - 0.247 0.305 0.152 0.379 0.103 0.072 

n. 2 2 2 1 2 2 2 2 2 2 19 

Yi 0.249 0.261 0.1475 0.308 0.259 0.310 0.1575 0.3795 0.106 0.072 0.22058 

Sample 

Ss(xlO 5 ) 
1.8 1.8 0.45 0 28.8 5 6.05 0.05 1.8 0 45.75 

s(x10 5 ) 1.8 1.8 0.45 - 28.8 5 6.05 0.05 1.8 0 s= 5.08339 

See page 57 
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Further, we obtain SS due to the individuals, 

	

SS (Ojp) = 0.171029 	with 	MS (O.Ii.i) = 0.019 

So that, 
MS (O.jii) 

F = _____ 	= 373.8 
e 

which is extremely high, stating that the variability between individuals is incomparably 
higher than that of determinations. 

If the mean 	can be accepted as an estimate of the population mean i, the sampling 
error must be calculated by (1.4 -1): 

10.171029 - = / 
y 	19 	= 0.095 9  

1.7.2 Example of a regression test 

Now we alsc' consider the lengths of individuals of sample No.2 (Table V) and evaluate 
the regression of the individual measures of Table VI on the lengths. 

We immediately have: 

I- 	- 	I 	-- 	- 
= —j- 	(x_ x)(_ Y) = -- (x-x)(y.- y) n. 

= 	
[ 	x.S 1 n. - nS ] 

= -- [ 57.099 - 19 x 13.5 x 0.22058 	= 0.0266 

S 	
=

(x. - )2n 	
= 	T [ 

x. 2 n 1  - n2 I 
1 	[3492.48 - 3467.68 1 = 1.367 

And analogously, 

1 
= _9-_ [1.095933 - 0.92445] = 0.00953 

Thus, the correlation coefficient between the concentration measures and the length in 
the example considered is r = .232. To test if this value is sufficiently high to assure a 
dependence of the concentration measures Yij on the length xj, we must apply test (2.5-2) 
obtaining 
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.232 

	

t17 = ,/1 - (.232) 	'97• = . 9(3 

This lies well below the critical value t17975j = 2.11 (Table A-4) so that we may conclude 
that there is no evidence that a dependence between yjj  and xi does exist, and that it is 
hence meaningless to evaluate a regression line. 

1.7.3 Example of a two-factor nested model with the determination of 
the variance components for individuals and pretreatment 

We consider only sample No.1 (Table V), ignoring lengths and weights. With the re-
maining data we can set up a 3-way nested table: determinations nested within pretreatments, 
which are nested within individuals. 	The model can therefore be written as follows: 

yljhk 	= 	p 1  + 0 13 + 0 h(ij) + 0 k(ijh) 

or dropping the sub-script 1, 

jhk 	= 	+ 0. 	
h(j) 

+ 0 	+ e 
j 	k(3h) 

= 	p + e. 
3 + 0h(j) + Cjhk 

which is like model (1.4-2). 

Since there are no replications, the last term 0k(jh)  is confounded with the error term 

Cjhk. 	Consequently, the model can be treated as a 	2-way nested model with replica- 
tions. 	The complete ANOVA is reported in Table VII. In the last column are the MS 

due to the factors which all differ significantly. 

Table VII 

+O 	+0 ANOVA of model 'jhk = p +O j 	h(j) 	k(jh) 

Source of SS OF MS 
variation 

Individuals 0. SS (0.) 	= 1.385894 9 0.153988 

Pretreatments 
0h(j) 

SS 
0h(j) 	

= 0.007689 10 0.000769 

Determinations 
0k(jh) 0k(h) 	

= 0.000532 20 0.000027 

Deviance sum 1.394115 39 

Mean 	p = 0.205225 SS (p) 	= 1.684692 1 

TOTAL: sum 3.078807 40 
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It is thus possible to evaluate the variance components from (1.4-3): 

0.000027 = a 2 	s 2 = 0.000027 
C 	 C 

0.000769 = a2 + 2oi 	 •. 	s 	= 0.000374 

0.153988 = a2  + 2a 2 	+ 4j2 	is 2 = 0.038305 £ 	II 	I 	I 

Hence it results that the variance due to individuals is more than 100 times larger 
than that due to pre-treatments, which in turn is almost 14 times larger than that due 
to determinations. 

1.7.4 Example of a two--Factor nested model with the determination of 
the variance components for samples and individuals 

Now we consider sample Nos. 2 to 9 (Table V), still ignoring lengths and weights, 
excluding fish i=2, j=4 because of the missing observation. 	The aim of this analysis 
is to estimate the MS between samples, individuals and determinations. The model is now 
without sub-script h, 

= 	+ o. + o 
j 	+ 0 ijk 	1 	 (i) 	K 

+ 0 
i 	j(i) 	i]K 

with ANOVA reported in Table VIII. 

Table VIII 

ANOVA of model y ijk = 	+0 . +0 	+0 
(1) 	k(ij) 

Source of SS OF MS 
variation 

Samples 0. SS (0) 	= 0.698404 7 0.099772 
1 i   

Individuals 0 
j(i) 

SS 0.737255 62 0.011891 

Determinations 0 
Ic(ij) 

SS 0k(ij) 	
= 0.006948 70 0.000099 

Deviance sum 1.442607 139 

Mean 	ji = 0.139421 SS (p) 	= 2.721366 1 

TOTAL: sum 4.163973 140 
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Again the MS differ significantly, so that we can evaluate the variance components by 
(1 .4-3) obtaining: 

= 	n 1  = 	m = 	2 

m2 
1 

- 	
____________________ 3 288 

] 
= [n.. 

] = 
[140 	

- _______________ 
140 = 	

16.64  

Hence, 

0.000099 = 0.000099 
C  I C 

0.011891 02 	+ = 0.005896 
C 

n 1  a 
11  

0.099772 	= 02 	+ n 11  a 	+ 	n 1  a s 	= 0.005281 
C 

It is seen that the variances due to samples and individuals are almost equal, but 
they are considerably (59 times) larger than that due to determinations. 

Comparing these results with those of Table VII, significant differences must be 
observed, both in determination and individual MSs and variance components. 	This is 
probably due to some outliers and/or some wrong determinations. 	Hence a synthesis of 
both tables is not advisable. 

1.7.5 Example of a covariance model 

Now we eliminate sample No.4 (Table V) because there are no measurements about lengths 
and weights of individuals, and we determine the mean concentration i,.. for all individuals, 
so that we now have 3 values: 13  . ., x.13  

. and w. 13.. 

The models which can be analysed separately are: 

	

=p + 	+ 	
x.13 

. + 
13 	1 	 13 

and, 

	

p + 	+ 1w.. + E. 13 	1 	I3 	13 

The corresponding ANOVAs are reported in Tables IX and X. 	It can be seen that 
neither the introduction of x ij  nor that of 	are of significant importance, since 
the residual MS remain almost unaltered, reducing only from 0.01139 without the concomitant 
variables to 0.01134 considering xii and even increasing to 0.01143 considering w j  

We may thus conclude that the concentration does not depend significantly on the 
length and weight of the fishes. 	But it must be underlined that in the samples con- 
sidered here, lengths and weights did not differ very much so that one could hardly 
expect another result. 	Regression models are only meaningful if the regressor, i.e. 
the independent variable has a variance as large as possible. 
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Instead of the above models, it is possible to include x ij  and w j 	contemporarily to 
obtain the model, 

	

y.. 	= 	p+O. +x..+Yw 
ij  
.+C.. 

	

13 	1 	13 	13 

Also, in this case, the introduction of the concomitant variables does not reduce 
the error MS which instead increases to 0.01147, so that the ANOVA table is not 
reported here. 

Table IX 

ANOVA of the regression model 13 
. . = 	i'+O.. 

1 	
. +€ 13 	1 [OF] 

- 
Il.1,oi 

MODELS 
oiIu, 

Ss (p) 	= 	1.839023 [ii 

SS (I) = 	0.331211 [7] 	SS (Ii.) = 	0.108838 	[1] 

ss (11,8.) = 	2.170234 [5] 	SS (p,) = 	1.947881 	[2] 

SS (i 3 O.) = 	0.014385 [1] 	ss (Ojp,) = 	0.236758 	[7] 

Residual SS 	= 	0.703327 [62] 

TOTAL: SS 	= 	2.887946 [71] 

Table X 

ANOVA of the regression model yij= 	 wij 	[OF] 

- MODELS 
e.I,y 

SS (ii) 	= 	1.839023 [1] 

SS (8.) = 	0.331211 SS (ylli) = 	0.096325 	[i] 

SS (,O 1 ) = 	2.170234 SS (i.',) = 	1.935342 	[2] 

SS (YIIJO) = 	0.009054 [i] 	ss (Ojii,y) = 	0.243940 	[7] 

Residual SS 	= 	0.708658 [62] 

TOTAL: SS 	= 	2.887946 [71] 
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1.7.6 Example of a comparison of three regression lines 

We analyse the data Yij  obtained by Renzoni (1977)  for the years 1973 (i-I), 1975 
(i=2) and 1976 (i=3) about the mercury content in small-scaled Scorpion fishes (Scorpaena 
porcu.$) with one concomitant variable, wij  (body weight), Table XI. 

Table XI 

Scorpaena porcu.s 	- Mercury content 
(white muscle) y. and body weight w. 

13 	13 

1973 1975 1976 
y. w. y. w. y. w 	. 13 13 23 23 33 33 

1 1.61 28. 1.6 27.2 1.23 78.6 
2 1.93 28. 1.24 28.2 3.046 85. 
3 1.52 36. 1.25 28.4 1.468 79. 
4 1.64 37. 1.1 29.9 2.514 87.5 
5 1.55 37. 1.07 29.9 2.518 82.4 
6 1.64 38. 1.41 30.1 1.776 83.6 
7 1.72 38. 1.1 30.7 2.084 78.6 
8 1.3 38. 1.12 31.2 2.067 79. 
9 2.28 38. 0.93 31.3 1.328 82. 

10 2.16 38. 1.02 31.7 1.433 82.5 
11 1.68 39. 1.05 32.8 1.343 33.1 
12 1.65 40. 1.13 36.5 1.213 35.1 
13 1.7 40. 0.96 37.1 1.004 35.2 
14 1.7 41. 1.20 37.4 1.852 55.5 
15 1.9 41. 1.26 38.5 1.855 57.5 
16 1.85 43. 1.11 39.1 1.555 72.7 
17 2.12 45. 1.15 43. 1.245 62. 
18 1.64 47. 1.41 45.2 2.297 63. 
19 1.9 47. 1.27 45.5 2.233 65. 
20 1.92 48. 1.09 45.7 1.457 78. 
21 2.0 54. 1.5 46.8 1.454 67.7 
22 2.14 50. 1.65 52.4 1.571 66. 
23 2.66 60. 1.45 54.1 3.805 74.1 
24 1.89 60. 1.48 56.7 1.485 63.2 
25 2.22 63. 1.41 57.5 1.176 87.2 
26 2.0 64. 1.04 60.1 1.729 74.9 
27 2.04 66. 1.35 60.6 1.795 80.2 
28 2.45 66. 1.31 65. .893 92.2 
29 2.0 69. 1.26 65.5 1.663 87.9 
30 2.18 70. 0.85 68.1 1.805 91.1 
31 2.3 72. 1.18 70.7 1.833 102. 
32 2.48 83. 1.40 74.3 2.691 107. 
33 2.11 85. 1.49 81. 2.344 113. 

ContLnae.d 
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1973 1975 1976 
i y lj w. 

13 y. 23 
w. 

23 y 3J 
w 

3j 

34 2.34 85. 1.56 81.3 1.286 134. 
35 2.16 91. 1.34 81.3 1.141 132. 
36 2.18 94. 1.59 90.6 3.541 143. 
37 2.16 109. 1.93 91.9 2.122 175. 
38 2.66 111. 1.82 92. 2.711 180. 
39 2.76 113. 1.35 93.2 2.453 170. 
40 3.0 123. 1.38 97.9 2.218 190. 
41 3.0 128. 1.37 104.6 1.410 44.3 
42 3.93 197. 1.91 106.6 1.131 54.6 
43 1.64 107. 2.141 58. 
44 2.38 109.7 1.693 65. 
45 1.32 117. 1.323 43.8 
46 1.89 117.7 1.736 54.3 
47 1.81 135.9 1.705 74.2 
48 1.51 138.8 1.568 77.1 
49 1.72 147.7 2.503 86.2 
50 .984 22.3 
51 1.108 26.4 
52 1.086 28.7 
53 .976 34.5 
54 1.812 145.6 
55 1.402 39.4 
56 1.832 168. 
57 1.723 120.4 
58 1.876 127.2 
59 2.144 210. 
60 2.068 190. 

Means 2.0969 64.5238 1.3808 65.8245 1.7909 87.93 

Overall means 	= 	1.7429 	; 	= 	74.2464 

The analytical model can be written as follows: 

	

y. 	= 	i + 0. + SW 	+ E 

	

3 	 1 	i ij 	ij 

and the ANOVA is reported in Table XII. 

I i = 1, 	3 

1. j = i, ..., 
1 
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Table XII 

ANOVA of the model y.. = p+O.+13.w..+E.. [OF] 
13 	1 	113 	13 

MODELS 
0 .111, 13. 

ss (p) = 458.69276 	[1] 

sS (Ojp) = 	11.82622  SS 	(13.111) = 	8.921592 	[3] 

ss (11,0.) = 	470.51898  SS (p.13.) = 	467.614352 	[4] 

SS (13.111,0.) = 	13.55092  SS 	(0.111,13.) = 	16.455548 	[2] 

ss (8Ip.0) = 	11.86722  

ss (13-13jp.0) = 	1.68370  

Residual SS = 22.57095 	[145] (MS 	= 	0.15566) 

TOTAL: SS = 506.64085 	[151] 

From Table XII it is now possible to test if the 3 regression lines have the same 
slopes, by: 

1.68370 
F 	= 	 __ = 	5.41 
2.1 1+5 	2 x 0.15566 

which is much larger than the critical value at the confidence level of .99 so that we 
conclude that the slopes differ significantly. Analogously, it is seen that also the 
intercepts differ significantly. 

The estimates of the regression lines reported in Figure 1 are for: 

1973: 	y 1  = 1.2846 + 0.01259 w 1  
1975: 	y 2 	0.9928 + 0.00589 

1976: 	y 3  = 1.2744 + 0.00587 w 3  

Comparing the regression lines of the years 1975 and 1976 (without considering 1973) 
it results (Table XIII) that the slopes do not differ significantly so that the two lines 
can be considered parallel. 
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Figure 1 	Regression lines of mercury content 
(white muscle) y 	 and body weight w.ij 

Table XIII 

ANOVA for the model y. 
13 

= 	i 	1 1 
J+O +.w. 3 .+E.13  [OF] 

iIp,ei 
MODELS 

I 
SS (ii) = 281.326906 	[1] 

ss (OI) = 	4.536285  SS (1I) = 	8.591268 	[2] 

sS (p,0 1) = 	285.863192  SS (p,.) =289.918174 	[3] 

ss (lu.ei = 	5.98745 [2] ss 	(OIi.i.) = 	1.932468 	[1] 

SS (Iu,O) 5.98743 [1] 

SS ($.-8111.Oi) = 	0.00002 [1] 

Residual SS = 20.369698 	[105] (MS 	= 	0.193997) 

TOTAL: SS = 312.22034 	[109] 
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Clearly, in such a situation, where the regression on the concomitant variable is so 
significant, it is almost useless to describe the results (of every year) by a mean and a 
standard deviation. At least the comparisons should be referred to a single point of the 
dependent variables, e.g. the mean , for which the regression lines assume the value of: 
Vi+b ( - ), with standard deviation (or error of prevision): 

/2-++S
C n 

Since in this case P=74.246 we obtain, with s, the square root of the residual MS 
(of Table XIII) the following values: 

Years 	1 1973 1 1975 1 1976 
Expected valuel 2.219 11.4301 1.711 

with an error of prevision of 	.157. 

1.7.7 Example of a set-up of a (quality) control plan 

We consider now the problem of the quality control of the determinations in an experi-
ment like that of Table V. 	Further we will guess the most convenient number of times 
determinations must be performed according to some prescriptions. 

We start analysing the ranges of the determinations of all samples and report them in 
Table XIV. 	We prefer an analysis based on ranges instead of standard deviations because 
the number of repetitions is as small as 2 (=m). 	Sample I because of repeated pre- 
treatments is counted twice. 

For each sample, at the bottom of Table XIV we have reported the sum of the ranges 
and their number q 1 . The mean range is hence: 

- 	=  414 
 = 	4.60 

and the variance is estimated (see Chapter 2.4) by R/dm = R/d 2  (d 2  from Table A-2). 
Hence an upper control limit (2a) for the ranges is given by: 

= - + 2 R/d 2  

= 	4.60 + 2 >< 4.60/1.128 

= 	12.76 
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Table XIV 

Ranges (x 1000) within determinations of samples i=1 	9 of Table V 

± 1 2 3 4 5 6 7 8 9 

1 2 	2 6 4 4 0 0 0 10 2 4 

2 2 	3 6 15 0 6 1 7 2 01 

3 4 	0 3 2 2 1 23 3 5 00 

4 5 	3 24 0 3 1 16 3 7 34 

5 1 	2 10 4 1 4 2 12 1 2 2 

6 0 	0 11 1 0 01 

7 25 	0 1 0 13 69 

8 18 	0 6 2 3 75 

9 16 	8 0 7 4 04 

10 0 	6 4 15 71 

21 4 

10 	10 9 5 10 5 5 5 10 21 90 

R. . 73 	24 67 25 24 12 42 25 60 62 414 
1J 

It is seen from Table XIV that 9  determinations which are underlined lie above the 
2cx control limit. 	The reasons for these exceptional ranges should be verified in the 
laboratory. 	The mean ratio of ranges above the upper control limit is: 	= 9/90 = .1, 
whilst the ratios of the single samples range from p = 0 to p= .4. 

Given this situation of observed exceptional ranges (which could be different, if 
for instance 3a upper limits had been chosen), let us try to find the most convenient 
number of determinations. 	Following the rules of 1.6 we have to state the precision 
C = it - p and the confidence level I - c. 

In the precision statement ir stands for a limiting acceptance level, which must be 
higher than the observed rate p, since this a typical unilateral decision statement. Hence, 
S > U. In our case we could choose ir = . 15 or if2 = . 20, etc. With the confidence level 

of 1 - 	= .95, then analogously to (1.6-2) we can write: 

z 	= 
(1 - cL) 

it —  p 

/N-n ir(1-ir) 
n 

it >p 

where z is the normal variate, rr(1-7r) the expected variance of the number of exceptional 
ranges, N the total number of individuals, and n < N the estimated number of individuals 
to be analysed in accordance with the preliminary statements. It follows: 
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A 
n = 	 with 

1+-- 
N 

lr(1-1r) 
A = 
	( i -ce) 	and 	•ff>p 

(Tr - p) 2  

For ff < p we will always leave n = N, what means that the sample equals the 
population. 

Taking the q i  values of Table V as population sizes N (besides co), we have evaluated, for 

p= .1 and some theoretical ratiosTrwitha = . 05, the expected number n, obtaining: 

N 	= 	oo 21 10 9 5 

11= .15 n = 138 19 10 9 5 

=.20 44 15 9 8 5 

=.25 23 11 7 7 5 

=.30 15 9 6 6 4 

That means for instance: 	If we control at a confidence level of .95, the determi- 
nations of N individuals, such that the percentage of ranges falling above the 2cY limit 
is not higher than 25% (i.e. rr = . 25), then for N= 21 it is sufficient to repeat only 
11 determinations, for N = 10 only 7, whereas for N = 5 all 5 determinations must be 
repeated, i.e. must be taken twice. 

It will be noted that for a universp (N =°) the values of n reported in the above 
table are extraordinarily low as soon as Ii 	.20. 

1.7.8 Example of the determination of the sample sizes in an 
experiment with two samples 

The determination of the sample size in an experiment with 2 samples. 

Using data from Larsson (1975), n 1  = 10 and n 2  = 9 flounders (control and experimental 
respectively) were exposed during 4 and 9 weeks to 50 pg Cd/i (CS= 7%). 	At the end of 
each experiment the hematocrit °, have been measured. 	The mean ± the standard error and 
the t-test (1.6-7) have been evaluated, obtaining following results: 

Control 	50 pg/i 	t 17  

4 weeks 	21.8 ± . 9 	18.8 ± . 9 	2.35 

9 weeks 	21.1 ± .8 	16.5 ± .8 	4.05 

	

n 1 =10 	n 2 = 9 
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In the first experiment the significance level of the differences between control and 
50 pg/i means lies between 2 and 5 percent, in the second below 1 percent. If the signi-
ficance of the difference between 18.8 and 21.8 is retained to be too weak (hence the 
significance level too high) to decide that a dose of 50 pg Cd/l produces a real effect 
on the hematocrit ° in four weeks, a lower significance level and hence a higher number 
of observations must be chosen. How must we choose n 2  with n 1  = 10, or, alternatively, 

= n 2  = m if we require a significance level of 1%? 

We start putting in (1.6 -8) t = t17(995)= 2.891 and obtain fl2 = 24. But, in this 
case, we had t = t 32 (.9 95 ) = 2.75. Reapplying (1.6-8) we obtain n2 = 18 for which 
t26(995) = 2.779 and n2 = 19. Since the next iteration would lead to a value between 
18 and 19, n2 = 19 could be assumed as the desired value. For n1 = n2 = m, using (1.6 -9) 
we obtain after 3 iterations m = 14. 

This means that, if a 1% significance level is required, with a given sample size of 
n 1  = 10 the sample size n 2  should at least be 19, or both samples should at least have 
14 individuals. 
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2. 	TESTS FOR BIOLOGICAL POLLUTION RESEARCH 

2.1 Introduction 

2.1.1 Hypotheses, tests and errors 

"The most frequent application of statistics in biological research is to test some 
scientific hypothesis. 	Statistical methods are important in biology because results of 
experiments are usually not clear cut and therefore need statistical tests to support 
decisions between alternative hypotheses. A statistical test examines a set of sample 
data and, on the basis of an expected distribution of the data, leads to a decision on 
whether to accept the hypothesis underlying the expected distribution (null hypothesis) 
or whether to reject that hypothesis and accept an alternative one" (Sokal and Rohif, 
1969). 	Hypotheses which are most frequently tested are those about: 

Frequencies, e.g. percentages of larvae hatching from eggs or fish 
being killed in a test ;  

Location measures, e.g. mean (mode, median) body length ;  

Measures of variability, e.g. variance or range of survival times, 
accumulation rates ;  

Cd) Dependence (regression) and interdependence (correlation), e.g. 
doses (concentration) response relationship and correlated changes 
of oxygen uptake and activity following exposure to harmful 
substances, respectively. 

(e) Detection of outliers, randomness. 

Statistical testing can be done by parametric and non-parametric methods. With the 
former, hypotheses are stated about values of the parameters in the population density 
function, with the latter not. 	Many of the non-parametric methods are further distri- 
bution free, what means that not even hypotheses about the form of the density function 
must be considered. 	Most distribution free tests can be derived using simple combina- 
torial formulas, so that each test has its own rationale. 

For the parametric testing the rationale is almost the same for all tests and can be 
summarized as follows: First of all the population parameter 0, like the mean p or the 
variance a 2 , has to be defined, generally with the density function of the population. 
We are then concerned with deciding whether some preassigned value 00  is acceptable in 
the light of the observations (= sample). 

We thus have the null hypothesis H 0  :0 = 00. 

The alternative hypotheses can be very different. We can have a simple alternative 
hypothesis, whether the population parameter is 0  instead of 00,  what we write H 1  :0 = 0. 
Or we can have composite alternative hypotheses, what means that the population parameter 
is larger or smaller than 00.  In this case we write H 1 :0>0 0  or F-f 1 :0<0 0 . 	These hypo- 
theses are unilateral, whereas the composite alternative hypothesis that 8 is different 
from 8,  i.e. H 1 :00 0 , is bilateral. 	In this paper we refer only to composite alter- 
native hypotheses. 
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The probability to refuse the null hypothesis, i.e. to refuse H 0 , is measured by the 
confidence level 1-a ((x, small, positive value, usually cx = .05. .01 or .001). 	100 cx is 
said to be the significance level of the test, and a the size of the test or the type I 
error. 

In the case of a simple alternative hypothesis the probability to accept H 0  when it 
is false, i.e. when the alternative hypothesis is true, is measured by , the type II 
error. 

The probability 1- represents the power of the test to detect a false null hypothesis. 

The decision process in statistical inference can be summarized as follows (Conover, 
1971): 

THE DECISION: 

/L.LLI- I 	r1 0  rtJLLI 	MO 

Correct decision 
Type I error 

Probability = Ia Probability = cx 
(level of significance) 

Correct decision 
Type II error Probability = 1- 

Probability = (power of the test) 

H 0  i 
The 	true 

true 

situation 	H 0  i 
fals 

To test any hypothesis on the basis of a sample of observations, we must divide the 
sample space, i.e. all possible sets of observations, into two regions: the acceptance 
region where H 0  will be accepted at the given confidence level and the critical region, 
complementary to the first, where it will be refused. In the case of unilateral hypotheses 
one critical value divides the acceptance from the critical region, whereas for bilateral 
or two-tailed hypotheses there are two critical values, an upper and a lower limit. 

In Figure 2 we have reported the critical value z 	 at the confidence level of 
1-ct= .95 to test the unilateral hypothesis whether an obseriedvaluez can be considered belonging 
to a normal population with mean p0,  or whether we must suppose that it derives from a 
normal population with a larger mean value. 

ze of the test 
cx = . 05 confidence \ level 

1 - a = .95 

110 

acceptance region 	critical region 

Z( 95 ) 
critical value 

Figure 2 	Example of a unilateral hypothesis 
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The hypothesis to be tested is hence H 0 : ji= lj o  against the alternative 
I -F Z<Z( 95)  we accept the null hypothesis H 0 , otherwise we refuse it. 

In Figure 3 we consider the test of the bilateral hypothesis whether an observed value can 
be considered belonging to a normal population with mean U0  orwhetherwe must suppose that it 
derives from a normal population whose mean is different (hence larger or smaller) from 
This hypothesis will then be treated as two unilateral hypotheses at sizes of the test 

H 0  :11 = 	 ; 	H 1  :11  >  11 0  

H 0 : 	 H 1 : 

For the first the critical value z 11 	is obtained and for the second z 
Hence the bilateral hypothesis: 

H 0 : 11 = 1 0 	H 1 : iQ 

which resumes both unilateral hypotheses will be accepted if the observed z lies within 
z 	and z 	a I hence if z 

L 	
< z < z 

(1- 1) J 	 r 

2 
= 

025 
 confidence  

~ir"1111 level 
1-a = .95 

.025 

lower 	 t 
criticaa vaauej Z 025j 

	 PO 

acceptance region 

critical region 

~critical upper 
Z(975) 

	value 

Figure 3 	Example of a bilateral hypothesis 
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Since the critical values of bilateral hypotheses coincide with the correspondent 
unilateral critical values with the half significance level, in the following we will 
not treat unilateral and bilateral hypotheses separately, since only the significance 
level has to be adjusted. 

We will now describe a number of tests following the order of the S points, (a) ... (e). 
Examples and applications can be found in Section 2.7. 	Some other examples, especially 
about analysis of variance and regression, are in Section 1.7. 

The number of tests described hereafter is obviously limited and cannot pretend to 
cover all possible hypotheses, but should enable the research worker to find easily the most 
important tests concerning his experiments. 

There are many books about biometrics on a more or less mathematically basis like Rao 
(1952), Snedecor (1956), Soical and Rohlf (1969), in which almost all tests are described 
and the necessary tables with the critical values are reported. Further classical table 
works are of Fisher and Yates (1963), Pearson and Hartley (1958), Diem (1962) and Stange 
and Henning (1966). 

Because of their repeated use we will always write the standardized normal variate 
(in unities of the standard deviation) as  z: 

z x - jl = 
a 

Student's t-variate with v degrees of freedom (DF): 

	

= 	-p 

	

tv 	
x 
 S 

the chi-square variate with V OF by: 

	

= 	(n-1)s 2  
a2  

and the variance ratio variate with V OF for the variance s and v.OF for s by: 

F = 
v 1 ,v 2  

The letter n indicates always the sample size, i.e. the number of all observations. 

critical values of z,t,X 2  and F and all other tests proposed, at the confidence 
level of 1-ct, will be indicated by the letter of the test, followed by the subscript 
within parentheses indicating the confidence level: 

z 	, 	t, 	, 	F 

	

t) 	v(1-a) 	v(i-e) (1-c 	 v 1 ,v 2 (1-cz) 

Tables of the critical values of z are reported in Table A-3, of t in Table A-4, of 

x2  in Table A-S and of F in Table A-B. If the value of a function is searched for an 
argument (not reported in the table) which is intermediate between two arguments reported 
in the table, it can be guessed by the method of interpolation. The correct way to find 
interpolated values of the function is described at the end of the table annex. 

11 	Tables A-I to A-25 are placed in a special table annex at the end of the paper 
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2.1.2 Confidence intervals and tests 

It is known (Chapter 1.3) that any interval which specifies two statistics (estimates) 
L 1 , L 2  such that the probability that a population parameter 0 lies within the interval 
(L 1 ,L 2 ) is 1-ct, where ct is a preassigned positive constant (< 1), then the interval (L 11 L2 ) 
is said to provide an interval estimate, or confidence interval for the parameter B at the 
confidence level 100(1-ct)%. 	This is generally indicated by: 

p [L 1 < 0 < L2 ] = 1-ct. 	 (2.1-1) 

Often the sampling distribution of a function of the population parameter, like a 
statistical test, T(0), is known. 	Determining two statistics T 1  and T 2  (2.1 - 1) can be 
transformed to: 	 T 

[T < 1(0) < 1 2 1 = = 1-ct 

T 1
.  (2.1-2) 

Solving T(0) for & and adapting T  and T2  the confidence limits of 0 as functions of 
T i  and 12  can be found. 	Suppose that T has been chosen to test the hypothesis: 

H 0  : 0 = 0 0 	against 	H 1  : 0 	0 0  

Then chosing T i  and T2•  under the null hypothesis, at the 100(1-ct) confidence level, 
the 100(1-ct) confidence interval for 0: [L 1 (T 1 ), L 2 (T 2 )] can be obtained. 	It follows 
that the values of 0 within the confidence interval, L 1 (T 1 ) < B < L 2 (1 2 ) would yielda value 
of the T-tostwithin the acceptance region(1 1 , 12). 	In other words, if 0 lies in its 100(1-ct) 
confidence interval, test T will not refuse H. at the significance level of ct, and vice- 
versa. 	,lso, the comparison of 2 parameters like H 0  :0 = 02 can be obtained by the use 
of confidence intervals of both parameters. 	In fact, 

(1) 	If no point is common to both intervals, H 0  can be refused 
at a smaller significance level than ct; 

If both parameters lie within the limits of the confidence 
interval of the other, then H 0  can be accepted 

If the intervals overlap in some way, other than under (ii), 
then multiplying the interval of the sample of size 
by:  

T / 	n2 	
i 	fn1+n2 

and the interval of the sample of size n 2  by: -- / 
we can conclude with good approximation that 	/ 	111 

no over-lapping leads to the refusal of H 0 , 
whilst over-lapping to the acceptance of H 0 . 
It may be observed that for n i z n 2  both 
multipliers reduce to - 

It is thus seen that for both tests it is easy to obtain 
from statistical tests confidence intervals and vice- 
versa. 	Here we shall limit ourselves to hypotheses testing. 
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2.2 Hypotheses about frequencies 

2.2.1 Test whether the frequency 7 of a character in a population 
equals if0 or it is larger 

The hypothesis to be tested is: 

H 0 	with the alternative 	H 1  : TI > 7T O . 	 (2.2-1) 

Sometimes H 0  is put in the more general form H. i TI 4 TTo 

If K observations in a sample of size n have the examined character, whose frequency 
in the population is hypothesized to be 7r o ,  the test statistic is given by: 

F 	
= 1 	

• 7~71_ ; 	v 1  = 2(n- k+ 1), V2 	2k. 	(2.2-2) 

If the observed F is larger than the tabulated (critical) F, hypothesis (2.2-1) must 
be rejected. 

12  For if 0  > 	
- test (2.2-2) can be approximated, putting p = 	, by the 

normal variate: 
12+n 

p - V(2n) - 11 0  

z = 	 _ 	,/T. 	 (2.2-3) 
1 710 (l -it o ) 

H. isrejectedif zz 	. For large n the correction factor -i-- could be 
eliminated. 	(1—ct) 	 2n 

2.2.2 Test whether the frequency TI of a character in a population 
equals 7r 0  or it is smaller 

The hypothesis to be tested is: 

H 0  :71 = 	 with the alternative 	H 1  : 71 < Tb 0 . 	 (2.2-4) 

The test statistic is now: 

_____ n - k 
F 	=  

\) 
')7 '2 	I - 11 0 	K + 	

; 	2(k + 1), V 2  = 2(n - k) . 	 (2.2-5) 

H 0  is rejected if F F 
V i ,\, 2 	\) 1 ,V2 (1—ct) 

For 710 	test (2.2 -5) can be approximated analogously to (2.2-3) by: 

71 0 - p - V(2n) 
z = 	 . 	 (2.2-6) 

/ ir0(l-r0) 

H 0  isrejected if zz (i — ct) 

Approximation of the binor'l test 
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2.2.3 Comparison of 2 frequencies: test of independence (both margins fixed) 

Suppose we have two samples of sizes n 1  and n 2 , n1 + n 2 = n, with K 1  and K 2  observa-
tions which detain the same or different characters. If they refer to the same character, 
the question is whether the samples belong to the same population. 	If they refer to 
different characters, the question is whether the frequencies of the characters in the 
respective populations are the same. In both cases the hypothesis to be tested can be 
written as follows: 

H 0  : Tr, =Tr2 = ir 	against H 1  : Tti: 7r ; 	I = 1,2 	(2.2-7) 

To find the test statistic we build the four-fold table with the margins: 

Sample I 	Sample 2 	Sums 

K 1  12 k 1 +k 2 	= 	K 

n 2 k 2  n - k 

n 1  n 2  n 

Number of observations 
with the character 

Number of observations 
without the character 

Sums 

Now we individuate the smallest entry in the four-fold table, say K 1 , and compute the 
probabilities *: 

= 	K! (n-k)! fl 1 ! n 2 ! 

1 	1! (n 1 -i)! (k-i)! (n-n 1 -k+i)! n! 	j 	 (2.2-8) 

and add all probabilities to give: 

K 1  
= 	1 
	 (2.2-9) 

This is the exact test of Fisher (1954) and gives directly the type I error. If 
PE -, H 0  Is rejected. It should be observed that this procedure is only correct if1t5ller,1961): 

k 1  (n 2 -k 2 ) 

(k 2 +1) (n 1 -k 1 +1) 
	1. 

The computations of this test are somewhat long, depending on the size of the sample. 
When the lowest cell frequency in the table is greater than ID, the method is quite imprac-
tical. 	When no marginal total is greater than 15, Biometrical tables (Pearson and Hartley, 
1958) gIve directly the probabilities P, and for marginals not greater than 30 we can find 
them in Diem (1962). 

* 	K! = 1 < 2 < 3 x ... < K. 	See Table A-I 



For values of n > 20 and no entry of the four-fold table smaller than 5, or for 
values of n > 40 and no empty entry, then H0 (2.2 -7) can be tested by: 

[k 1 (n 2 -k 2 ) - k 2 (n 1 -k 1 )] 2 n 

n 1 	n 2  . k 	(n-k) 
• 	I U) 

If 	X(l a ) H 0  is rejected. 

If c 4-fold tables must be tested for independence, then the joint test: 

	

= 	
x,j 

can be computed, comparing it, like (2.2-10) with X( l _ (% )• 

Another test statistic to prove H 0  is based on the arc sin transformation (in radiants): 

arc sin 	- arc sin ,/ 	K 1 	K 2  

	

z = 	 ; p1 	
, D2 
	

. 	
( 2.2-11) 

1 

2 / n 1  n 2  

If Z 	Z 
(i--f- a) 	

H 0  is rejected. 

2.2.4 Comparison of c frequencies: test of homogeneity (one margin fixed) 

We consider now a population whose elements differ for r ( rows) characters, with 
frequencies rr, j = I ... r. 	Consider c (E  columns) samples of size ni.,  i = I ... c. 
For the i-th sample there are n1. E nij =n 1 , , individuals which posses character j. 
Thus we can build the two-way 	i 
cross table: 

Sam pee2 

characters I ... 	i ... 	c sums 

In ... 	n. • 	n n 
11 1 1 Cl .1 

jn 1,  • . . 	nij . 	. 	. 

r n n. n n 
ir ir cr •r 

sums n 1  • 	ni nc.  n 

(2.2-12) 
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The hypothesis to test is: 

H 0 : TT 	= 	, all i, j against H 1 : rr.. fir. some i,j . 	(2.2-13)
ii  

If H 0  is true, the frequencies 7r are estimated by pj =n.j/n. 
The following conditions must be satisfied: 

No expected value niPj = n1.n. 
	

must be smaller than 1 

Only 20% of the above expected values must be smaller than S.  

If these conditions are not fulfilled some columns and/or rows of (2.2- 12) can be 
joined so as to meet the conditions. 

Then H 0  can be tested by: 

n. 

X 	= n(V 	13 	
-1) . 	 (2.2-1') 1)( 	1)   n. 1•  n •J 

If X 2 H 0  is rejected. 

This test can also be used to test independence. For a 4-fold table it reduces to 
(2.2-10). 	If the population frequencies would be known or predetermined, H 0  can be 
tested by: 

	

(n. 3 	1 
- n. rr 

3 
 )2 

X 	
1 

( ri ) = 	n1 
(2.2-15) 

This corresponds to the test of goodness of fit (2.2-18) for the comparison of c 
observed frequency distributions with one theoretical. Thus if H 0  can be accepted, the 
o distributions are independent. 

If X2  of (2.2- 15) is greater than the correspondent Xic1  H 0  is refused. Hypothesis 
(2.2- 13) can also be tested by Kullback's test (Kullback, 	1959), which is also 
known as G-test (Sokal and Rohl-F, 1959) 

0 	X 	 (2.2-16) 

= 2( 1 In 1 	ln n.. - 	n j.  ln nj.  

 -zn. ln n. + n ln n) 

where ln indicates the natural logarithm (= log e ). 

If 	6 ) X 1)  H 0  is rejected. The utility of the G-test lies especially in its 
application to more 	complex designs. 

The case of no margins fixed is treated in 2.2.7. 
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2.2.5 Comparison of an observed with a theoretical distribution: 
tests of goodness of fit 

A discrete or continuous population density function ij(x) is predesignated (= 0(x)) 
The total range of variability of x is sub-divided into r classes, so that for 
each class the frequencies Tr j . j = I ... r, can be evaluated. Now a sample of size n 
is considered, with nj  observations for each class, Enj = n. To test the hypothesis, 

H 0  : 	= i 0 (x) 	against 	H 1  : (x) * 0 (x) 	 (2.2-17) 

we must first evaluate the expected frequencies nlr j  and check the following conditions: 

If r = 2 both nr 1  and fir2  must be greater than 5, 

If r>2 see conditions 1) and 2) of Section 2.2.4 

The null hypothesis will be rejected if the goodness of fit test 

(n -n  
x_ l  = 	j 

n ir. 	
x2 r-1(1-a) 	

(2.2-18) 
1 

The extension of this test to c distributions is given by (2.2- 15). 

If the expected frequencies have been obtained through an estimate of m parameters, 
then the OF of X 2  must be reduced by further m. 

The same null hypothesis can be tested by the Kolmogoro-Ff-Smirnov test (Kolmogoroff, 
1941;Smirnov, 1948) for continuous variates and for samples with more than 5 observations. 
All we have to do is to write down in a column the cumulated population frequencies: 

= ïr 1 . ( x 2 ) = Tr 1  +Tr ... and in general Ex) = Z Trh 	Correspondingly we 
evaluate the cumulated relative frequencies of the 	h=i ordered sample (x 1  <x 2  ... < x i,) 

F(x) 
= Il 

hi nh 

and write them in a second column. In the third column we write the differences: D(x) = 
- F(x) and we select the maximum value of these differences without considering 

the sign: 

	

0  n = maxIfl(x)I 
	

(2.2-19) 

If 0 	0 a 	H 0  is rejected (Table A-7) . Unilateral hypotheses can also be 
tested. 	n 	 For large n 	n(1a)  can be approximated after Smirnow (1948): 

	

I -a 	1 	.95 	.975 	.99 	.995 	
(2.2-20) 

	

1.22 	1.36 	1.52 	1.63 
(1-a) 
	/n 	Vn 	/n + I Vn 

For discrete variables the above test procedure can be applied, with the only 
difference that now the confidence level is not equal to 1-a but it is larger. 
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The Kolmogorof-F-Smirnov test can also be generalized to include the alternative 
hypotheses: 

H 1 : O(X) > Ex 0 ) 
	

(2.2-2 1) 

and 
H 1 : OW < 
	

(2.2-22) 

In the first case the test variate is the maximum positive difference: D+(xj); 
in the second the maximum negative difference in absolute value: -EY(xj). which 
can be compared with the critical values °n at the confidence level of 1-ct. 

2.2.6 Comparison of an observed with the normal distribution 

2.2.6.1 Probit analysis 

A widely used method of comparing an observed distribution functior F(xj), with a 
normal one, (x1), is that of the probit transformation of the observed cumulated fre-
quencies. If he observed values of xj are normally distributed, the resulting probit 
transformation will be a straight line. 

The procedure generally followed (Finney, 1971), given xj and the cumulated fre-
quencies F(xj), is to transform the latter, recurring to Table A-19, into empirical probits 
Y(xj). A straight line is then plotted through the empirical probits, either by eye, or 
by the usual regression methods, weighting the probits with the weights w[Y(x 1 )] = W. 
which can be found in Table A-20. 	From the regression line the expected probi€s Y'(x) 
can be guessed. 	For most purposes, these will be sufficient. For more precise results 
the expected probits will be corrected to working probits Y(Xj) by the transformations: 

= V 1  - [ 1 - F(x.)]A 	for 
	

Y'(x.) 	E 

and 
	

(2.2-23) 

y(x1) = Yo + F(x)A 	for 
	

Y'(x.) 	5 

Here V 0  and V 1  are the minimum working and maximum working probits respectively, and A 
is the range. V 0 . V 1  and A can also be found in Table A-20. A new weighted regression line 
(with weights wj) is plotted through the working probits obtaining the new expected probits 

If the correspondence between V"(x) and the expected probits used in the first 
cycle, Y'(x), is not considered to be close enough, computations must be repeated starting 
from Y"(x) until the desired degree of correspondence is obtained. 

2.2.6.2 Normality tests 

Besides the tests previously described in Section 2.2.5 and the tests for outliers 
in Section 2.6.1,other tests are used to test the hypothesis whether a distribution is con-
sistent with the hypothesis of normality: 

H 0 : 	 (x) = normal distribution. 	 (2.2-24) 

ICA distribution function is defined by the cumulated frequencies of a frequency distribution 
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In the following we describe two methods for testing the above hypothesis: 

(i) 	The tests of skewness and kurtosis. We first evaluate 

/ 	(x. - ) 3  
b1 	

= _________ 

	 (2.2-25) 

which is known as skewness, then 

n 
b2 =

= 	[(x ) 2 ] 2  

which is known as kurtosis. 

The first test, b 1 , is sensitive to departures from normality 
in symmetry, hence with the alternative hypothesis H 1 : c(x) = 
not normal and skew distribution. The second, b 2 , is sensitive 
to departures from normality in the degree of peakedness of the 
distributions, hence with the alternative hypotheses H 1  : O(X) = 
plati- or leptokurtic distributions. 

For a normal distribution (symmetric and mesokurtic) we have 
b 1  = 0 and b2  = 3. Positive values of b 1  indicate a longer 
right tail, negative a longer left tail of the central maximum 
of the distribution. 	Values of b2  larger than 3 indicate 
leptokurtic distributions, with higher peak and over-dispersion.; 
smaller than 3, but always >1 + b 1 , indicate platikurtic and 
under-dispersion when compared with the normal. 

Approximated critical values for 1b,j and b 2  at the 1% and 5% 
significance level, have been evaluated by Pearson (1830) and 
D'Agostino and Pearson (1973) from which we have taken the lines 
of Figure 5, whereas those of Figure 4 have been evaluated on the 
base of the sampling variance of b 1 . 	The acceptance areas resul- 
ting from the combined decision 1b11  b1()  and b2() lower limit 
E b2 	b2( (X ) upper limit' lie almost completely within the contours 
evaluated by Bowman and Shenton (1975), but comprises those of 
Shenton and Bowman (1977), at least for the example reported by them. 

Values of 1b 1 1 and b2  falling within the acceptance region, permit 
thus to accept the null hypothesis (2.2-24) at the given confidence 
levels. 

(2.2-26) 
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(ii) Generally more efficient tests, especially for low values of n 
(Shapiro etal., 1968) are those based on the ordered sequences 

X(i) > x(i_l) as the 	(Shapiro and Wilk, 1965) or as the 
normal plot correlation coefficient rn (Filliben, 1965). The latter 
is, for small n, poorer than W for shorter tailed and skew 
alternatives, but marginally better than W for symmetric larger 
tailed alternatives. Further, the latter has the great advantage 
that it is completely computer implernentable, what means that no 
coefficients need be stored. 

To compute the value of W, given a complete random sample of size n, 
one first has to compute: 

b = a 1  [x (fl)-x (1) ] + a2  1X(n_1)X(2)I + 

extending the sum for all positive differences within [], where the 
values of a1 are given in Table A-23. Then the W-test of hypothesis 
(2.2-24) is given by: 

b 2  
W 	- 	(n-1)s 2  

where s 2  is the sample variance. If Wn  <1 W() (Table A-24), H 0  
must be rejected. 

To evaluate the normal plot correlation coefficient rn,  first the 
uniform order statistic medians m1 can be evaluated (with 3 decimal 
places) using 

i = 1 

m. = 	(i - .3175) / (n + .365) 	i = 2 ,.., n-I 

V .5 n  

and finally the normal order statistic medians M1, as computed from 
or the inverse normal function (Table A-3) will be obtained. 

Hence evaluate the ordinary correlation coefficient: 

X ( i )  M1  
r 	

= /(n_I) s 2  I M2  

with critical values reported in Table A-25. If r n  < rn(a) ,  H 0  
(2.2-24) must be rejected. 

(2.2-27) 

(2.2-28) 

(2.2-29) 

(2.2-30) 
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2.2.7 Comparison of two distributions 

Consider a sample of size n i from a population with distribution -function 
(Section 2.2.5) and a sample of size n 2  from a population with distribution function 
where x is a continuous variate. We test the hypothesis whether both samples derive from 
the same population, or equivalently if both distribution functions are equal: 

H 0 : 	1(x) = 	 = ci(x). 	 (2.2-31) 

First we transform then 1  and n 2  observed values in one ranked sequence, i.e. we associate rank I 
to the smallest value of the n 1  and n 2  observed, rank 210 the next and so on. The rank of 
the highest value is then n 1 +n 2 . 	If some values are equal, the mean rank is associated to 
them. 	Now we choose the smaller sample, say the first if n 1  n 2 , and evaluate the sum of 
the ranks R 1  corresponding to the values of that sample, then compute the Mann-Whitney-
Wilcoxon tests: 

n 1 (n 1 + 1) 
U 1 	n1n2 + 

	2 	
- R 1 	; 	U 2  = n 1 n 2  - U 1  . 	 ( 2.2-32) 

If the alternative hypothesis is H 1 : 1 (x)>c 2 (x), H 0  will berejected if U2U , 	. 
I -F the alternative hypothesis is H 1 : 1 (x)< 2 (x), H 0  will berejected if U 1  U1 n2(1(t) 
I-F the alternative hypothesis is H 1 : 1 (x) 2 (x), H 0  will be rejected if 	1' 2 

the smaller of U 1  and 1J 2  is smaller than u 	n (1) 	Critical values are reported in 
Table A-B. I -f n 1  or n 2 > 20, or n1+n2>40, 1 2 	2 we can recur to the normal approximation: 

n 1  n 2  

= 	2 

fn,n 2 (n 1 +n 2 +1) 
- 	

12 
(2.2-33) 

Another way of testing hypothesis (2.2-31), if 	n1-n21  5 and n= n 1 +n 2 50 is the 
X-test of Van der Weerden (1971). This consists in transforming the ranks of one of the 
two samples, say r1 ... rn 1  into -fractions 

r r 1 	r2 	, 	• , 

n+1 	n + 1 	n -I -I 
r. 

If these - are considered as the cumulative frequencies of a distribution, F(), we 
can transform them into normal variates, Y'(xj), by inspection of Table A-3. 	n 

Then we form Van der Waerden's test: 

x 	= 	I - ' (x.)l n 
(2.2 -3L+) 

If X >1 Xn(i_a)  (Table A-21), the null hypothesis must berejected. Since the test is 
symmetric, unilateral hypotheses can also be tested easily. 

Still another way is given to test the same hypotheses. This is done dichotomising 
the values of both samples in the ranked sequence, writing the letter A for all values of 
the first and 8 for all values of the second sample, the ranked sequence transforms to a 
sequence of A and B. 	A sequence of one or more like elements preceeded and/or followed 
by unlike elements is called a run. The original sequence of xi is thus transformed into 
a sequence of r runs. 	The null hypothesis (2.2-31) that both samples derive from the same 
population can then be tested by inspection of Table A-9, where the lower and upper limits 
r 1 , r 2 , of the acceptance interval are given at the confidence level of 1-a. If r 1  <r<r 2 , 
H 0  can be accepted, otherwise rejected. 
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If one of the two sample sizes is greater than 20, a normal approximation can be used: 

r - [2 n 1 n2  / (n 1 +n 2 )-1] 
z = ____________________________ (2.2 -35) 

/[2n 1 n 2  (2n 1 n 2 -n 1 -n 2 )] / [( n1+n2 )2(n 1+n2 _1)  

which reduces for n 1  = n2  = c to: 

r- c - i 
z = 	 (2.2-36) 

Fn(n - i) / (2n-1) 

If z 	< z < z 	The null hypothesis can be accepted. 
() 

The above hypothesis (2.2-31) can also be tested by the Kolmogoroff-Smirnov test 
(2.2-19) if the x1 classes are the same, with critical values: 

x 	 (2.2-37) 
(i-ce) 

/ 	1 

with X (1 	given byStange and Henning (1966), after Smirnow (1948): 

1 - a 	.95 	.975 	.99 	.995 

X 	1.36 	1.48 	1.63 	1.73 
(i - a) 

If the two samples are linked, when for one reason or another the observations 
have been obtained pair-wise, then hypothesis (2.2-31) can be tested by Wilcoxon's pair 
difference test. 	In this case obviously n 1  = n 2 . 	We -First calculate all differences 
d. = x 1 .- x 2 . . 	Suppose the non-null differences are nd,  nd should not be much smaller 

than n. 	Then we transform the absolute values of the nd differences, 
dj, in a ranked sequence. 

Now the ranks of the positive differences are added to give T and the sum of nega-
tives are added to give T, (T+T = ½ nd(nd+ 1)). The null hypothesis will be rejected 
for: 

H 1  : 1 (x) > 2 (x) 	if 	T 	Tn (l a ) 

H 1  : c 1 (x) < 2 (x) 	if 	T 	Tn(la) 	 (2.2-38) 

H 1  : 0 1 (x) 4 0 2 (x) 	if 	mm (T, T) < T (12) 
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Critical values for Tn(lc)  are reported in Table A-ID. For n> 25 we can use the 
normal approximation: 

= n(n + I) - 
n(n+1)(2n+i) . 	(2.2-39) T o 	 Z 

If the values of both samples appear in dichotomized form A,B (nominal scale), the n 
linked observations can be classified into a 4-fold table: 

anipA?a 1 
A 	B 

A 	n 	n 
AA 	AB 

(2.2-40) 
B n BA 	BB 

Put 	BA 	AB = nd and  nmin  the smaller between nAB  and  nBA. 	The hypothesis, 

H0 	AB = 1TBA 	 (2.2-41) 

i.e. the comparison of two frequencies if no margin is fixed (only nd is fixed), will be 
rejected if: 

n. 	L mm 
(2.2-42) 

L() obtained from the binomial distribution (Table A-22)*. For large values of nd(2O),  the 
normal approximation can be used: 

--(n+z/) 
() 

(2.2-43) 

or easier, the test of Mc Nemar (tonover, 1971) for significance of changes: 

AB - BA 
x2 	 (2.2-1+4) 

For values of 	X(Ie) the null hypothesis must be rejected. 

If A and B are expressed at least in ordinal scale, the above test is known as the 
sign test, even if this in its original form considered only the case with nAA=nBB=D. 

* The fact that tests (2.2-42) and (2.2-43) are based only on the non-matching responses 
is in some way misleading. In fact the probabilities of hypothesis H0: 71AB=1BA  are 
estimated by: 

AB 	BA p = - and P = - AB 	nd 	BA 	nd 

but could also be estimated by: 

AB 	BA 

	

P 	- and P = - AB 	n 	AB 	n 

leading to quite different results. A simple way, though approximated, to consider the 
difference betweeen nd and n, is to substitute in(2.2-42) nmjd by: 

nd 	n 	n 

	

n'. 	= 	- 	- n.) 	-a 	. 	 ( 2.2-1+2') 
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2.2.8 A combination of type I errors 

Suppose we have applied some different and independent tests to a situation and obtain 
different responses for which we evaluate the type I error Fisher (1954) showed that 
it is possible to estimate the significance of the type I errors, by computing: 

X:m = -2 	ln P. . 	 (2.2-45) 

If Xm < Xm(i_) then the "mean" type I error of the different tests is larger than 
a, otherwise it is smaller. 

2.3 Hypotheses about location measures 

2.3.1 Test whether the mean p, of an approximately normal population 
with unknown variance, equals a preassigned value 10 

To test the hypothesis whether a mean equals a preassigned value, or equivalently, 
whether a sample belongs to a population with that preassigned mean, i.e. 

H 0  : p = p 0 	against 	H 1  : v 	 (2.3-1) 

we need a sample of size n and evaluate its mean 	= Exi and variance 

2 	1 	- 2 	1 	2 	-2 
5 = 	(x.- x) 	= -- ('x. - n x ) 

Hypothesis (2.3-1) will be rejected if Student's test 

Ix - p 0  
t 	= 	t 	. 	 (2.3-2) 
fl-i 5 	 n-1(1-) 

For small samples, n<20, the sample standard deviation s can be approximated by the 
sample range R (i.e. the maximum observed minus the minimum observed value: R=X(n)  X(1)). 

In this case, test (2.3-2) reduces to: 

A 	= I - 11 0 1 / R 	 (2.3-3) 

with A 	in Table A-Il. 

If in (2.3 -3) the mean is estimated by the median 	of the sample, we have the test: 

- V o l 
A 	= 	 (2.3 -4) 

cR 
n 

where cn is a correction factor reported in Table A-2. 
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If the hypothesis of normality cannot be sustained, hypothesis (2.3-1) can be tested 
by the analogous based on the median: 

H 0  : 	= 	
( 2.3-5) 

	

The observed values must be ordered in a ranked sequence X(j) 	X(j +i ) and hence 
the above hypothesis can be tested establishing the 95% confidence 	interval 
with lower limit 

L = X(h) 	 (2.3-6) 

and upper limit 

U = 	 (2.3-7) 

Values for h at the 95% bilateral confidence level are given in Table A-2 (Sachs, 
1970). 	If 	falls outside this interval (L,U) the null hypothesis must be rejected. 
This test is meaningless for n8, whereas for 8<n11 the confidence interval comprises 
the whole sample range. 

2.3.2 Comparison of two means sampled from approximately 
normal populations with unknown variances 

First we consider the case of unknown but equal variances. Given two samples of size 
n 1  and n 2  with means 1'2 

and variances we reject the hypothesis that the means do 
not differ significantly, or equivalently that the samples belong to the same population: 

H0 :111 = 	= p 	against 	H 1  : 	 112 	
(2.38) 

if, 

	

H12 I Tn
t 	=n 1 +n 2 2 	 +fl 2 	n1+n2-2(1-) 	

(2.3-9) 

where, 
2 	ni 

(n 1 -1 )s+(n 2 -1 )s 	= 	
(x - ) 2 

	

5 
	i=1 j=1 

n 1 +n 2 - 2 	n 1 +n 2 -2 

If the population variances cannot be supposed to be equal, it is still possible to 
test exactly hypothesis (2.3-8) if both samples are of the same size (n 1  = n 2  r). Then 
we reject the null hypothesis if the sample statistic 

- 

t 	= 	___ 	? t 	. 	(2.3-10) 

	

r-i 	
+___ 	

r-i(i-) 
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If finally neither variances nor sample sizes are equal, the approximated test 

= i x - 	
(2 3-11) 

	

n 1  + n 2  -2 	/S 2 

can be applied for large n . 	Precision of this test is increased if the OF n 1 +n2-2 are 
substituted by: 

(n 1 -1) (n 2 -1) 	 s/n 

	

V = 	 with 	d = 	. ( 2.3-12) 
d 2 (n 2 -1)+(1-d) 2  (n 1 -1) 	s/n 1  + s/n2  

Exact critical values of (2.3-11) for 1-ct = 0.95 and 0.99 are given by Aspin (1949). 
If t' 	t 	0, , H is rejected. 

V 	V,(1-) 	0 

If the smallest of n 1  and n 2  is not below 5, the situation of n 1 	n 	and 
can be solved elegantly by the test of Scheff6 discussed in Kendall (1961) reducing 
randomly the number of observations of the larger sample, say n 2 , to that of the smaller 
(n 1 ). 	Then evaluate 

1

w. = x. -/_
n 
- X. 1 	1 1 	n 2 	21 (2.3- 13) 

and their mean . The hypothesis (2.3-8) can then be tested by: 

t 
>(1 - 

= ______ ; 	n 1  < n 2 	 (2.3-14) 

/1 
 1) 

If the observations of the two samples a1e obtained pair-wise, so that n 1  = n 2  = r, 
then hypothesis (2.3-8) can be tested by: 

t 	= 	____________ 	 ( 2.3-15) /--Lr-i 	r 	
- x2 

 
(d-2)2 

where d are all the r differences x 1 _x2  = 	( j = I ... r) and d 
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2.3.3 Comparison of the location of two populations with any distribution 

Consider two samples of n 1  and n 2  observations and transform the n+n 2  values in a 
ranked sequence (Section 2.2.7). Determine the median 	of this sequence. 	Then build 
the following 4-fold table: 

Sampie I 	Samp'e 2 

Number of values > 

Number of values 

K 1 	K 2  

n 1 -K 1 	n -k 
1 	2 

(2.3-16) 

Now tests (2.2-9) and (2.2-10) can be applied. 

If hypothesis (2.2-7) is rejected, also the hypothesis that the medians of both 
populations are equal: 

H 0  : 51 = p 2 	 (2.3-17) 

will berejected and the alternative hypothesis H 1 : P 1  =# P 2  accepted. This test is known 
as the median test. 

Further tests which apply to hypothesis (2.3- 17) are those based on the distribution 
functions of the populations, which in fact comprise the hypothesis of equal location 
measures as the Mann-Whitney-Wilcoxon (2.2-32), the run (2.2-35) and the Kolmogoroff-Smirnov 
test (2.2-19) with critical values (2.2-37). If the observations are obtained pair-wise. 
Wilcoxon's pair difference test (2.2-38) or the sign test in its different forms (2.2_42)- 
(2.24) can be used. 

2.3.4 Comparison of the means of c samples 

The comparison of c means, i.e. whether the means of c samples can be considered 
equal, is equivalent to test the null hypothesis that the samples belong to only one 
population, or that the means of the populations from which they derive are equal. Hence 
the hypothesis to be tested can be written: 

H 0  : p1=p; all i 	against 	H 1  : 	some i. 	(2.318) 

The samples are best written in a two-way table like (2.3-19). The hypothesis 
(2.3-18) will berejected if the population distribution can be assumed to be normal and 
with equal variances if the test (2.3-20) is larger than the corresponding tabulated 
value Fc_ln_c(1) 



Samples I 

x ii  

Observations 

per x 1  

sample 

x in 1  

i 	." 	C 

x ii  

xii 

x. in 1  

x ci  

x ci 

x fl  

(2.3 - 19) 
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Number of 
observations n1  fl 

1 
n. 

1 
... 	n 

C 
r n-in. 

1 

Means 1 ... 
1 

. 
1 

... 
C 

= 1 
n 	1] 

- 	n . n-c 5 	n. - 	n 2 	n-c - 
F 

• = 

- C1,fl-C U(x.. - .) 2  c-I I I x 2 
X 

2  n 	c-I 
(2.3-20) 

This type of analysis of the means is the well known I-way analysis of variance. 
The study of other analysis of variance models is beyond the intention of this introductory 
notes on statistical tests. 	We refer to the already quoted books of biometrics and others 
about analysis of variance and covariance, like Dunn and Clark (1974). 

Some models have been treated by the author (Möller, 1976) and in Sections 1.4.1 and 
1.4.2. 

If the observations are expressed as percentages, two ways can be followed, either 
transforming the frequencies as arc sins  as for (2.2-11), using then the ANOVA methods, 
or transforming them to fljj ln n 1 	as for the G-test (2.2-16) and using then the analy- 
sis of entropy methods (Garner and McGill, 1956) 

If the normality assumption cannot be held, the comparison of c samples can be per-
formed with the test of Kruskal and Wallis (1952, 1953). 	Therefore we transform the n 
observations of table (2.3 - 19) in a ranked sequence from 1 to n, as in Section 2.2.7, and 
substitute Xjj by their corresponding ranks R11. We form at the bottom of table (2.3 - 19) 
the sums of the ranks Ri= As  a check we must have ER 1 =n(n+1). 	Hypothesis 
(2.3-18) is now changed to - the non-parametric hypothesis: 

H 0 : all c samples derive from the same population, 	against 	(2.3-21) 

H 1 : some of the c samples do not derive from the same population 

and can be tested by: 

12 	R 2  
X2 	= __ 	--- - 3(n-'-l) . 	 (2.3-22) 
C-i 	 n(n+1) 	n 
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If 	X_ 1(1 _ )  the hypothesis will be rejected. 

More complex models are treated by Friedman (1937, 1940), for which we report only the 
2-way analysis for which no entries must be missing. In a scheme like (2.3-19) with n 1 =r 
the Xjj values of each row (or column) are substituted by their ranks from 1 to c, (or 
from I to r) and the sum of the ranks of each column R1. (or row, R.) are calculated. 
For c>3 (or r>3) the hypothesis of no influence of the columns (or rows) can be tested 
by the test of Friedman: 	- 

12 	R - 3r (c+1). 	 (2.3-23) X1 = 	or (c+1) i 

If X 2 	the hypothesis can be accepted. 
c-i 	c- l(1-ct) 

2.3.5 Multiple a posteriori comparison 

It will be noted that the alternative hypothesis of (2.3-18) namely H:  p 1 	p, has 
not to be valid for all I but only for some of them. 	That means, that only one mean can 
be sufficient to have the null hypothesis rejected. It would be therefore interesting to 
have some criteria to individuate those means, which increase mostly the numerator of F, 
i.e. (Xj-) 2 flj. the sum of squares. SS, between samples. 	This can be achieved by the 
following tests. First determine the critical value F.1 n-c(1-a) then we get from 
(2.3-20) the critical value for the between SS: 

SS 	= 
8( 	

13 	
. 

i-a) 	n - c 	
F  (2.3_2L+) 

(x.. - x . ) 2  

The ratio 	= MS 	is the "within mean squares" (= within SS divided by 
- its OF), so that: 	n 	c 	w  

ss 	= (c - I) • MSF w 	clnc(ia) B(j_ct)  
(2.3-25) 

Any sub-set of samples can now be tested computing simply the between SS due to that 
sub-set and comparing it with SSB(lct)• 	If it is larger than SS5 	the sub-set cannot 
be considered to derive from the 	same population. 	This is 	the SS simultaneous 
test procedure of Gabriel (1984). 

Another way of carrying out a posteriori tests, if all nj = constant = r, is to use the 
largest difference found among a set of means (their range) in place of their SS. 	This 
sample range is then compared with the least significant range. or Tukey's multiple com-
parison test: 

LSR 	=  (1 - ct) 	c 	/ 	r n cU -  a) 
(2.3-26) 

where Qk , isthestudentized range, for which critical values are reported in Table A-12. 
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I. 	 _ I 

It may be noticed that for c = 2, 

2,n-2 = /2 t_ 2 	 (2.3 - 27) 

If we wish to compare a pair of means that do not have the same sample size, LSR must 
be modified by replacing in (2.3-26) r by 2 n 1  112 , which is an average of the two sample 
sizes. For testing three or more means, 1 2 this test is no longer exact. 

In both methods, the SS simultaneous test procedure (2.3 - 25) and the least significant 
range (2.3-26), the type I error is clearly smaller than a. 	So these tests are on the 
"safe decision side". 	A step-wise method to bring the type I error closer to a is the 
Student-Newman-Keuls procedure. 	The sample means are written in increasing (or decreasing) 
order ((i) 	 X () ) in the head column and row 0-F a two-fold table (2.3-28) 
with the number of observations. If the order is increasing, we compute the differences 
row mean- column mean, and report them in the lower part of the table: 

means 
number of 

observations 

X (1)  

fl 1  

X (2) 	 X (3) 	... 

n 2 	n 3 	... 	n 0  

X (1)  n 
1 

0 

x 
(2) 

n 2 x 
(2) 	x 

(1) 
0 

X (3)  n 3  X (g) X (1) 	X (3)(2)  0 

(c) n c x
(c)(1) 	X (c)_ (2) 	X(c)_(3) 	 0 

(2.3-28) 

A difference X(j)-X( g ) in the above table to be significant must be equal to or 
greater than: 

LSR 	= Q , 	- 	
g , 
	(2.3-29) (i -a) 	Is \)(1 a) / 2n fl g  

with Is = 1 + (i-g) and V = n-c. 

Other ways of finding classes (clusters) of similar means are obtained by 
dendrograms (Mller, 1973)c. 

11 see also Figure 8 of example 2.7.2.5. 
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2.4 Hypotheses about variances 

The sample variance is given by s2 = -j- (x 1 - ) 2  and can be approximated for small 
n( 20) by the sample range R (maximum observation - minimum observation): s = 
with d in Table A-2. 

2.4.1 Test whether the variance a2  'rif an approximately normal population 
equals a preassigned value G 

The hypothesis whether the population variance a 2  can be assumed to be G is equiva-
lent to the hypothesis whether a sample with variance 2  has been extracted from a popula-
tion with variance o . To test the null hypothesis, ignoring the population mean, 

H 0 	a2  = a 	against 	H 1  : a2 	a 	 (2.L+1) 

we evaluate, 

(n-I )2 

n-i 

The null hypothesis will be rejected if, 

x2 x2 	or 
n-i 	n_ i 

(2.'-2) 

? X_111_ 	, 	(2.4_3) 

The same hypothesis can be tested if s is approximated by R with the test statistic, 

R = 	I 	d n  a0 	- 11 	 (2.4-Li) 

with d and g n in Table A-2. 

Hypothesis H 0  is rejected if Z > Z(1c) 
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2.4.2 Comparison of two variances of approximately normal populations 

We will test the hypothesis whether two population variances a 2 and G are equal, 
or equivalently (if the means p 1  and p 2  are equal) whether the two samples derive from 
the same population, i.e. 

H 0  : cy =CT = a2 	against 	H 1  : a 	. 	(2.4-5) 

The test statistic is Fisher's sample variance ratio: 

F 	= —k-- 	 s 2  ? s 2 	(2.4-6) 
n1-1,n2-1 	s 	1 	2 

If F ? F (1 _ )  the null hypothesis is rejected. 

For large samples (n 1 	100) hypothesis (2.4-5) can be tested by: 

- 
z =  ____ _____ 

n 2  + 	
/72 	n2  • 	 ( 2.4-7) 

If Z > Za 	the null hypothesis is rejected. 

2.4.3 Comparison of c variances of approximately normal populations: 
tests of homoscedasticity 

To test the hypothesis whether c variances can be considered equal, 

H 0  : aI = 02 	i = 1, 2 .....c. 	(2.4-8) 

against the alternative hypothesis, 

H 0  : a ,' a 2 	; 	some i 	 ( 2.4-9) 

we consider c samples and order them like (2.3- 19), then we evaluate the 
sample variances s and the pooled variance 

s2 = 
	E(n. 1)s 	= 	(x  I 

Hypothesis (2)+-8) can be tested by Bartlett's test (which is rather sensitive if the 
normality condition is not fulfilled): 

c 

x.. 1  = - -j-- 	(n-1)ln .4 
- 2.3026 - 	

K 	
[(n-c)Log s2 - (n 1-1)Log 	 (2.4-10) 
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with 

k = I + 	
n-i - 3(c-1) 	nc  

If 	X_l(l_a) H 0  is rejected. 

Much easier tests, if all samples have the same size n1=r (all i) are Hartley's 
Fmax test and Cochran's g-test (Cochran, 1941). 	To obtain Fmax  we simply divide the 
maximum observed variance 5(c) by the minimum observed variance 	so as to get: 

F 	
= 	(c) 	

(2.4-11) 
max,c,r-i 

fl 

If Fmax 	Fmax(1-e) (Table A-13), hypothesis (2.4-8) must be rejected. 

To obtain Cochran's g r tt we divide the maximum sample variance by the sum of all 
observed variances, hence obtaining: 

= 	(c) 	 (2.4-12) 

i1 s i 

If gc,r 	gc,r(j-)' nomogram byStange and Henning (1966) reported in Figure 6, the 
null hypothesis must be rejected. 

1.0 

.9 

.8 

.7 

1-e=.99 
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Figure 6 	Critical values of Cochran's g 'r(l
- 
 ) with confidence levels of 1-a = .95 

andl-cz=.99  
(from Stange and Henning, 1966, with Kind permission of Springer Verlag, Berlin 
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2.4.4 Comparison of c variances of any distribution 

A final test proposed by Scheffé (1959) consists in dividing randomly all samples in 
at least two sub-samples of any size ( 2), say in q1 sub-samples with nij observabions 

q 

	

each, • 1n. . = n.. 	For each sub-sample, evaluate the variance s. and its normalizing 
3=1 13 	1 	 13 

transformation, 
n..-1 13 	2 

13 
z.. = 	/ ___ 	logs... 

,, n13 	13 (2 . 	3) 

If nij = m = constant, it is sufficient to put z ij  = log sj. Now we evaluate 
the test 	statistic: 

F = 
c-i ,q.- c 

- 

(z.. - 

• 

c-I 
(2.t+_1L+) 

which is the same test of a one-way analysis of variance (2.3-20). 

If F > F (1 _ )  hypothesis (2.4- 13) must be rejected. 

2.5 Hypotheses about the interdependence (correlation) and the 
dependence (regression) in bivariate variables 

A bivariate distribution (x,y) can be characterized by five parameters lix, 	' ax  ay  
and the covariance axy  or the correlation coefficient 

a - 	xy 
aa 
x y 

In this section we describe some tests dealing with hypotheses about the linear correlation coeffi-
cient p. 	The covariance axy  is estimated through a sample of size n (= n pairs of 
observations xi  and y) by 	sxy= - 4-- 	 and the correlation coefficient by: 

(x.-) 

r =s x 
5y = 	/(x1_)2 	•2 

2.5.1 Test of no correlation in a bivariate normal population 

To test the hypothesis 

H 0  : p = 0 	against 

the test statistic is: 
ri 

tn_2 
	r2 

 

If t 	>1 t 
n - 2 	n-2(1-) H

0  is rejected. 

H 1  : p 	0 	(2.5-1) 

(2.5-2) 
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2.5.2 Test whether the correlation coefficient p of a bivariate normal population 
equals a preassigned value P0 

The size of the sample to test this hypothesis must not be smaller than 25. The 
following functions must then be evaluated: 

(r) =in 	and 	(P0) = --- in 	(2.5-3) 

The function 	is commonly indicated as the z-trnsformation of r (Fisher, 1954) 
The hypothesis 

H 0 : p = p0 	 1 against 	H : p 	p 0 	(2.5_4) 

can then be tested by the normal variate: 

= 	[(r) - ( p 0 )] 	 (2.5-5) 

If z 	z 	, the null hypothesis must be rejected. 

2.5.3 Comparison of two correlation coefficients of bivariate normal populations 

The comparison of two correlation coefficients leads to the hypothesis: 

H 0  : p1 = p2 	against 	H 1  : p 1 	p 2 	(2.5-6) 

If the sample sizes are not smaller than 25, using transformation (2.5-3), the null 
hypothesis can be tested by: 

I C(r1) - 
z 	= 	 ,-.-, 

 72 -3 

where r 1  and r 2  are the correlation coefficients of two samples of size n 1  and n 2 . 

If z 	z 	, the null hypothesis must be rejected. 
(l-) 

If n 	25, the distribution of r can be inspected in the tables of David (1954). 
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2.5.4 Tests of no correlation in bivariate populations with any distribution 

When the hypothesis of a normal distribution cannot be assumed, other ways of testing 
the independence are given by Spearman's and Kendall's rank correlation coefficients. For 
both the null hypothesis can be written: 

H 0  : no interdependence (dependence) between x and y 
against 
	

(2.5-8) 

H 1  : x and y are dependent. 

Given a bivariate sample (x,y) of size n, we order the xj values in an ordered sequence 
of ranks R. 

1 
(from 1 to n) and so the y values to give R 

If x.x. and y. 	y. for all i 	j, it follows that R 	R 	and R 	R 
1 	3 	1 	3 	 xi 	x 	y 	y 

Spearman's rank correlation coefficient is given by: 

V B L(Rx_Ry1) 2  

	

r 	= 1 - 	 ( 2.5-9) 

	

S 	 n(n2-1) 

and hypothesis (2.5-8)  can be tested for n20 by: 

	

z 	= 1r 9 1 /n7 1 . 	 ( 2.5.10) 

For 10 	n < 20, we have: 

r 
t 	= 	_____ 	. 	 ( 2.5-11) 

If z > z 	or t 	1> t 	hypothesis (2.5-8) must be rejected.OL  (l-) 	n-2 	fl-2,1-.) 

For 4 < n < 10, exact critical values are reported in Table A-14. 

To obtain Kendall's correlation coefficient r, we define the new variables: 

I if > 0 xj 

 
> 

= 1 if Rx < 0 Rxj  

and (2.5-12) 

1 1 -F - R >0 
yj 1 

; 	j>i • 
= ij   -1 if R -R  <0 

Yj  Yi 
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Then Kendall's T is defined by: 

2 

T = 
	3>1 	

(2.5-13) 
n(n-1) 

To evaluate the sum, 

	

.. 	
ij flu 

3>1 

it is convenient to write the ranks Rx1  in increasing order and the corresponding R y  
ranks below them, obtaining the sequencies: 

ranks of x 	: 	1 	2 	3 	... R 	fl 
1 

ranks of y 	: R 	R 	R 	... R 	... Y( 1 ) 	2  

	

Y() 	Y(3) 	'(i) 

Now we count the number of all ranks R y1 . on the right side of Ry(i) which are larger 

	

than Ry (1)  obtaining a number which we will 	indicate by S.  Then the 	total sum of all 
terms 	is: 

S 	X Si, 	(Sn = 0), 	and 	fl 1  = 2 S - 	n(n-1) 
1=1 	 3>1 ij 

so that (2.5- 13) transforms to: 

4S 
T = 
	n(n-1) - 
	 ( 2.5-11+) 

Hypothesis (2.5-8) must be rejected for n >10, if: 

z 	
T 	

[9n(n-1) z 	( 2.5- 15) 
12(2n+5)  

For n 	10, exact critical values for t are reported in Table A-14. 

If the condition x1 =# x 	and/or yi t Yj  for all i t j is not fulfilled, but 
instead same x values are repeated t<  times, we associate to xj the mean rank. Corres-
pondingly we associate to y values repeated t times the mean rank. Then we form: 

T = 	ttx(t_1) 	
an 	= - d 	T 	

ty(ti_1) 	(2.5-16) 

and get Spearman's rank correlation test corrected for ties, 

	

6 	(R x1 Ry 1 ) 2  

	

r5  = 1 - 	 (2.5-17) 
n(n 2  - 1) - (T + T) 



- 62 - 

Hypothesis (2.5-8) must be rejected for n ? 20 and with the entity of ties small with 
respect to n, if: 

z = 	r5  I /9 > 	
(1-i. ) 
	 (2.5-18) 

In the same manner it is possible to obtain Kendall's rank correlation test corrected 
for ties putting w >  = E t(t-1) and  w = Z t (t -1): 

' 	ty  y 	' 

2 	r1 ijij  
_____ 	 (2.5-19)  

/n(n - 1) -w 	/n(n-1)w 

in which E ii  and Ti ij  are defined as (2.5-12) including the zero. 

Hypothesis (2.5-8) must berejectedfor n>I0 if (2.5 - 15) is true. 

2.5.5 Hypotheses about regression coefficients of normal bivariate populations 

A regression line is defined by 	y = ci.+ 	x. 	As for the correlation we can now prove 
easily the -Following hypotheses: 

H 0  : 	= 0 against H 1 	: 0 (2.5-20) 

H 0  : 	= ao against H 1 	: (2.5-21) 

H 0  : 	= 2 against H 1 	: (2.5-22) 

First we define the following sample functions: 

The estimation of the regression coefficient : 

S 
b = XY 

The residual variance: 

S = 	(s-b 2  s) = -. n-I - s, (1_ r2 ) 

Hence we reject hypothesis (2.5-20) if the test statistic, 

lb I 
t 	

= 	SR 	
,-I)s 	. 	(2.5-23)

2. 
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Hypothesis (2.5-21) will be rejected if 

t 	= 	/(n-1)s 	t ( U 	 (2.5-2 1+) 
fl-2 

and hypothesis (2.5-22) if 

b 1  - b 2  
________________________ 	 ct (2.5 - 25) tn+n2_ 	

= 	I 	
t 

SR/I)2 + 

For further tests about regression lines we refer to Section 1.5 and Mller (1976) or 
any books dealing with analysis of covariance, like Searle (1971), Dunn and Clark (1974), 
besides the already quoted books about biometrics. 

2.6 Other tests 

2.6.1 Tests for outliers 

Observations that differ very much from the rest of the numerical values are usually 
called outliers. To obtain tests to detect outliers in a sample from a normal population, 
the sample observations are first ordered from smallest to largest. Let X( 1 ) be the 
smallest value and X(n)  the largest. 	The hypothesis, 

H 0  : X( 1)  is not an outlier 

against 	 - 	 (2.6-1) 

H 1  : X (1)  is an outlier 
( the distribution of the population is not normal) 

can be tested by Dixon's test, 

X 	- X 
r 	

= 	1 
2 	1 	

(2.6-2) n 	-x (n) 	(1) 

Analogously, the hypothesis 

H 0  : x ()  is not an outlier 
against 	 (2.6-3) 

H : x (n) is an outlier 1  

can be tested by: 

r 	= 	
n-i) 	

(2.6-4) 

(n) 	(1) 
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If rn 
	n(i-ct) 

r 	, hypotheses (2.6-1) or (2.6-3) must be rejected. The critical rn
values 	are reported in Table A-15. 

Another test for outliers based on the same assumption of normality is Grubbs' test. 
If the largest value is suspected we calculate the test statistic: 

= 	X(jX 	
(2.6-5) 

Hypothesis H 0  (2.6-3) isrejected, i.e. X(n)  is to be considered an outlier, if 
Tn ( l ) .Critical values are given in Table A-16. 

For n 	20, a suitable test is given by the ratio 

2n = R/S . 	 (2.6-6) 

Critical values 
2n() 

 and Zn(la)  which delimit the acceptance region can be 
found in Table A-17. 	2 

if Z ( a )  < Zn < Zct. neither X (
1) 	 (n) 

nor x 	must be considered outliers. 

-. 2 

if Z 
n 

X (1)  must be considered an outlier if 	_X (1)1> X (fl) _X 

or 

X ()  must be considered an outlier If X 	 - X 

Once eliminated an outlier, the same procedure can be applied to the remaining data, 
clearly with modified confidence level. 

2.6.2 Tests for randomness 

Consider a sample from a normal population of n observations obtained in any order 
(e.g. time series). To test whether events occur in a random sequence or whether the 
probability of a given event is a function of the outcome of a previous event, we can 
use Neumann's mean square successive difference test (Neumann, 1941): 

11 	= 
	(x 1  - x 1 ) 2 	

(2.6-7) 
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The alternative hypothesis can be of two kinds: 

The sequence is  not at random because of short-term critical 
influences. In this case the hypothesis of randomness is 
rejected if q 	fl 2  n 	n(i-aj 

The sequence is not at random because of long-term influences 
(trend) . In this case the hypothesis of randomness is 
rejected if r 	fl ()  

The acceptance region delimited by the critical values of ri2 	
_2 

are reported in Table A-lB. 	 n(a) 	n(i-a) 

Another test about randomness, or more exactly about no correlation between successive 
terms of a time series, is the circular serial correlation coefficient of lag h: 

n 

: (x.-) (xi+h_) 
i=1 

R 	= 	 (2.6-8) 
h,n (n - i) S2 

where, x ih = x i+h-n 	i+h for all terms x 	for which i+h>n. 

The hypothesis of no serial correlation can then be accepted at the confidence level 
of 1-2a, if Rh,n lies within the acceptance region Rh n() - Rh n(i-) as reported in 
Table A-lB. 

The hypothesis of randomness can also be tested by the test for runs up and down 
(Wald and Wolfowitz, 1940) . 	Herefore the signs of all n-I differences x1 - x 1  are 
recorded so as to give a sequence of only + and -. A sequence of the same sign is 
defined a run of length equal to the number of equal signs. The original sequence of x1 
values is thus transformed into a sequence of r runs. The hypothesis of randomness can 
be tested by the normal approximation which is satisfactory for n as low as ID: 

r-(2n-1)/3 
z 	 (2.6-9) 

f(16n - 29) / 80 

The null hypothesis of randomness can be accepted if 

z CL < Z < Z 
(l-) 

For a sequence of dichotomized data a test of randomness is the run test (2.2-35). 
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To test a time series specifically against the presence of a trend, the sign test 
(2.2-42 to 44), known under this circumstance as the Cox andStuart (1955) test For trend, 
is applicable. Just group the variables into pairs: 

1 ...c 	; c = -_ 	; neven, 

	

(x 1  . ; x i ) 	I = +c 
I ••. (c-i) 	n+1 ; n odd 

Then evaluate all c or c-i differences x - Xi+c and apply the sign tests 
(2.2-42) or (2.2-43). 

2.7 Examples 

2.7.1 Examples of tests about frequencies 

2.7.1.1 Examples of tests about single frequencies 

Consider the first sample of Mullus barbatus of Table V. 	Is it possible to accept 
the hypothesis that 50 of the fish have a concentration level of .i(E H 0 ) or are there 
significantly more ? 

By inspection of the table we get: 

k = 7 	fish with a concentration higher than .1 

n-k=3 fish with a concentration lower than .1 
n = 10 

The hypothesis to be tested is H 0 : IT = . 5 against 	H 1 : ir > .5 , and the appropriate 
test (2.2-2): 

F 	
= 	= 1.75 	F 	= 2.70 

8,lt. 	I - .5 	4 	8,14( .95) 

Hence, H 0  can be accepted: The difference between the observed frequency of 	.7 
10 and the hypothesized value of ir = .5 cannot be considered to be high enough to state that 

significantly more than 50% of the fish have a concentration level of .1. 

Since ir 0  = . 5 
12 

 the above test cannot be approximated by (2.2 -3). 

If we consider only the first concentration levels of all fishes, we get: 

k = 44 

n-k = 37 
n = 81 
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Since 
12 	- 	12 

0.13<Tr = 	.5 12-tm 	- 93 

now test (2.2-3) can be used, evaluating 

p = 44  - = .5432 
81 

and hence 

.5432 - _ 1;: -16 	.5 
z 	 (.95) 	v.67< z 	1.645 

v.5 • .5 

Again. H can be accepted: As in the previous case, we can conclude that the 
difference between p = .5432 and ir = .5 cannot be considered to be high enough to state 
that significantly more than 50% of the fish have a concentration level of .1. 

2.7.1.2 Example of a comparison of two frequencies by Fisher's exact test 

We compare the frequencies as in 	2.7.1.1 of samples I 	and 2 of Table V. 	We have: 

K 1 	= 	7 k 2  = 9 k 	= 16 

n 1 -k 1  = 	3 n 2 -k 2  = I n-k 	= 	4 

ni 	= 10 n 2  = 10 n 	= 20 

Since n is not too large and in the 4-fold table figures one very small entry, 
we use the exact test of Fisher (2.2-9) evaluating: 

16! 4! 10! 10! 	16! 4! 10! 10! 
7! 9! 3! 1! 20! 	= 	6! 10! 4! 0! 20! 

Pecurring to TableA-1 weget the logarithms: 

Log P 1  = ( 13.3206+1.3802+26.5598)-(3.7024+5.5598+.7782+18.3861) 

	

= 	27.8204-28.4265 	= 	-.6061 
P 1  = . 248 

	

Log P. = 	27.8204-(2.8573+6.5598+1.3802+18.3881) 

	

= 	-1.363 

	

P0  = 	. 043 

Hence P 	P 1  + P 0  = .248 + .043 = .291, which, being larger than - 	.025 permits 
to accept the hypothesis (2.2 -7): 

H 0  : Tr I  =Tr 2 	against 	H 1  : 7T 1 	rr2  

That means that the observed frequencies of 	for the first and 	for the second 
sample do not differ significantly. 	 10 
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2.7.1.3 Example of a comparison of two frequencies by X2  test 
and arc sin transformation 

Bulnheim 11977) compared the survival rates of Gamiiarus duebeni descending from inbred 
and outbred strains. From a number of 47 outbreeding pairs he obtained n 1  = 6809 young 
and K 1  = 6065 survived up to the stage of sub-adults. From a number of 33 inbreeding 
pairs n 2  = 2638 young were obtained, of which k 2  = 2013 reached the stage of sub-
adulthood. Can the survival rates, 

K 1 	 K2  
p 1 	n 1  = - 	. 89 	and 	p 2  = - = . 69  n. 

be considered equal? 	That is the null hypothesis to be tested. 	Hence by (2.2-10), we 
obtain 

[6065.625 - 2013.744]2.9447 
x = 	 6809•263880781369 

	

= 250.04 >> X2 	= 7.879 
1 1. 995 ) 

Hence the hypothesis of equal survival rates will be rejected. 

We could also have used (2.2-11): 

	

larc sin ,/ 	- arc sin 	11.233 - .980j 
z = 	____________ 	

/.000526

________ = 22 

2 	6809•2638 

	

I 	1 

which confirms the above result. 

Finally we evaluate (2.2-16) first building the table of n times the normal logarithm 
of the entries of the four-fold table of the observed frequencies: 

observed frequencies n ln n 

6065 	2013 8076 52828 	15314 72677 

744 	625 1369 4920 	4024 9887 

6809 	2638 9447 60096 	20782 86473 

Hence G, = 2(52 828+4 920 + 15 314 + 4024 - 72 677 -9 887 - 60 096 -20 782 + 86473) 	234 
which approximates fairly well the above 

2.7.1.4 Example of a comparison of four frequency distributions 
by X2  and 0-test 

Temperature and salinity choice can be altered following or/and during pesticide 
exposure (Bayne etal.. 1973). The following table gives an example for salinity choice 
by an euryhaline organism: 



Salinities 	Concentration uf poison: 
chosen 0 1.0kg lOpg lOOpg 

0 °  60 2 8 10 80 

15 °/ 10 28 5 13 56 

30 15 35 39 43 132 

85 65 52 66 268 

To test whether with increasing pesticide exposures higher salinities are preferred 
or not, we can recur to (2.2-14) obtaining X = 121.1 or (2.2 - 16): 	06 = 122.06 
Both values are much higher than the critical value of X (95) 	12.592 

The advantage of the 0-test lies in the fact that sub-hypotheses can be easily tested. 
First, let us consider the logarithmic transformation of the above table which led us to G 6 : 

245.66 1.39 16.64 23.03 350.56 

23.03 93.3 8.05 33.34 225.42 

40.62 124.44 142.88 161.73 644.53 

377.63 271.34 205.46 276.52 1498.38 

If we were interested to check if there are any significant differences between the 
effect due to the thiee differwit coriceitraLions u -F poison, hence eliminating the first 
column, all we have to do is to evaluate the new marginals of the last column which then 
becomes: 

frequencies n i log n 

20 59.91 

46 176.12 

117 557.17 

183 953.34 

Now G = 23.2 which is still above the 5% critical value denoting that the three 
chosen concentration values determine a different response. With the same method, we 
obtain instead for the concentration of 10 pg and 100 pg, 02 = 2.44, which is smaller 
than the critical value: there is no significant difference in the responses. 
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2.7.1.5 Example of a goodness-of-fit test 

It is a common experience of field biologis'cs that relatively low or medium coloni-
sation densities of a given species are much more frequently encountered than high and 
extremely high ones. Hence the assumption of a Poisson distribution seems reasonable. 

A large random sample was taken (Elliot, 1971) of the number x i  = K of maifly nymphs on 
the tops of stones at night, obtaining the frequencies nk . 	 The mean ± 	 10.125 
and the expected frequencies of the Poisson distribution could thus be determined: 

= exp(-) 

To use the X2  test (2.2-18) we first group the extreme classes together to satisfy 
the condition, so as to have as few as possible classes with expected frequencies lower 
than 5. 	The results are indicated in Table XV, from which X2=  .62 is obtained and 
which, being smaller than 1, needs no inspection of any table because the correspondence 
between observed and expected frequencies is almost perfect. The DF of X2  must be lowered 
by I since one parameter, Z, had to be estimated (OF = r-1-1 = 9) 

Hence, the colonization densities of maifly nymphs can be assumed to be distributed 
like the Poisson density function. Since the fundamental characteristic of the Poisson 
distribution is to let unchanged = nr, a very low colonization probability 

10.125 
_____ = .127 

n 	80 

follows from the observed data, confirming the idea stated at the beginning of relative 
low or medium colonization density. Further, it follows that, for increasing n, the 
probability n tends to diminish. 

In the last three columns of Table XV we have reported the cumulated relative observed, 
F(x1), and expected, c$(x 1), frequencies, and the absolute value of their differences D(x) 
to apply the Kolmogoroff-Smirnov test (2.2 - 19). Hence,  080= .0224 which is well below 
the critical value of 080(96) = .167 confirming the above results. 

Table XV 

Comparison of an observed with a Poisson distribution 

x=K nk n 71k nk-n 11k X F(x) (x) ID(x)I 

4 .0250 .0269 .0019 

5 2} 
4 

2 
2.15} 499 
2.64 

-.99 .20 .0500 .0625 .0125 

6 4 4.79 -.79 .13 .1000 .1224 .0224 

7 7 6.93 .07 .00 .1875 .2092 .0217 

8 10 8.77 1.23 .17 .3125 .3189 .0064 

9 10 9.86 .14 .00 .4375 .4424 .0049 

10 10 9.99 .01 .00 .5625 .5674 .0049 

11 10 9.19 .81 .07 .6875 .6824 .0051 

12 8 7.75 .25 .01 .7875 .7794 .0081 

13 6 6.04 -.04 .00 .8625 .8551 .0074 

14 4 4.37 -.37 .03 .9125 .9098 .0027 

15 4 2.94 1 .9625 .9466 .0159 

16 2 1.87 .9875 .9700 .0175 

17 1 ~ 	7.20 
1.11 

.20 .01  1 .9839 .0161 

18 of 1.28j  1 1 

80 79.89 X=.82 
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2.7.1.6 Example of a probit transformation to determine LC 50  

To determine the 96 hs LC 50  of Syntopon C for Scolelepis fuliginosa, Stora (1972) 
fitted by probit transformation a normal distribution to the mortality curve thus obtaining 
the equation of the expected probit line y(x) = a+bx. Solving this for y(x) = 5, the 
LC 50  is easily obtained. The result of Stora's analysis is reported in Table XVI. 
Empirical probits and working probits have been obtained by (2.2-22) recurring, as for 
the weights, to Tables A-19 and A-20. 

Table XVI 

Observed mortality curve and its probit transformation 
[from Stora (1972), with kind permission of Station marine d'Endoume, Marseillel 

x. Y(x.) Y'(x.) Y(x w Products _ 
0 a o 

E 	c - 	o (DC 
o- 0 fl aCfl 

ca-' Co 
-p 

o 
i' 	H • 	- 	o, 

0(D 
. 	•,. r4 u 

ao 
r 	1 - 

O 
- w. 	x. w. 	y. . 	x. 	y. 

2 w 	x 
E 

33 333 ii 
O c_i 

tiO 
0 

_J  (.0 LU 3 3 

9 19 95 0.95424 6.6449 6.48 6.6250 5.5120 5.2597 36.5170 34.8455 5.0190 

8 17 85 0.90309 6.0364 6.08 6.0349 8.2280 7.4306 49.6551 44.8429 6.7105 

7 13 65 0.84510 5.3853 5.63 5.3671 11.0000 9.2961 59.0381 49.8930 7.8561 

6 11 55 0.77815 5.1257 5.10 5.1255 12.6860 9.8716 65.0220 50.5968 7.6815 

5 9 45 0.69897 4.8743 4.48 4.9030 11.5260 8.0563 56.5119 39.5000 5.6311 

4 2 10 0.60206 3.7184 3.73 3.7195 6.9240 4.1686 25.7538 15.5051 2.5097 

Sums: 55.8760 44.0829 292.4979 235.1833 35.4079 

- 	44.0829 

	

= 	= .789 

292.4979 - 
5.235 

	

= 	55.876 	- 

	

Hence, b = 	.0786 	= 7.04 .011166 

35.4079 - 759 2 
55 	= .011166 

x 	 .876 

235 .1533 S 	= 	- .789•5.235 = .0786 XV 	55.876 

and, 	a = 5.235 - 7.04 • .789 = -.32 , 

so that the expected probit line is defined by y. = -.32+ 7.04 X. 

For y  =5 we obtain Xj = log L0 50  = . 75568 which corresponds to a concentration 
of 5.7 mg/l. 



- 72 - 

2.7.1.7 Example of normality tests 

We consider sample 9 of Table V and specifically the n21 differences between determina-
tions, obtaining (multiplying by 1000): 

2, 0, 0, -3, -2, 0, 6, -7, 0, -7, -4, -1, 0, -4, -2, -1, -9, -5, -4, -1, -4. 

We evaluate the skewness b 1 , the kurtosis b2, the probit line, W and r 0 . The main 
operations are reported in Table XVII. 

Observations: 

Ci) 	From the first 4 central moments of the xj values, we have obtained 
from (2.2-25) and (2.2-26) b1 = .128 and b 2  = 3.357. 	Both values 
lie within the acceptance area of Figures 4 and 5 for n = 30, hence all the 
more for n = 21. This means that we can accept the normality 
hypothesis. 	b 1  > 0 tells us that the frequency distribution 
has a longer tail to the right of the central maximum, and 

3 that the curve is leptokurtic. 

To evaluate the probits, one has to first compute the cumulative 
frequencies by: 

i-.5 - 2i-1 
21 	- 	42 

with i = I •.. 21. 	From Table A-19 the probits Y(x)  are obtained 
and reported in Figure 7. It is seen that a straight line fits rather 
well to the data though it seems that a sigmoid curve fits better, 
denoting a slight over-dispersion as to the normal (confirming b 2 ), 
which is more pronounced at the right side (confirming b 1 ). 

For the W 0-test (2.2-) the difference between the largest observed 
value, X(n)  minus the smallest X( 1 ) is formed, then after elimination 
of these 	values, the difference 	between the next largest X(n_l) 
and the next smallest X( 2 ) is formed, and so on. Correspondingly 
we obtain the weights ai from Table A-23. The sum of the products 
is obtained, b = 14.7399, and divided by (n-1)s 2 . The result is 

= .9561.FromTable-24 it is seen that the observed value lies 
well above the critical value of W21(.05)1  hence permitting to accept 
the hypothesis of normality. 

In the last two columns of Table XVII are reported the values for 
determining rn  (2.2-30). 	First determine mi using (2.2-29). Here 
it is only necessary to evaluate the upper half of the table, since 
the corresponding normal order statistic medians are equal to the 
lower part, changing the sign. The M1 values corresponding to m1 
are obtained from TableA-3; then the ordinary correlation coefficient 
between X(j) and Mi  is evaluated, obtaining r 21  = . 973 which, 
confirming the former results, lies well above 	the critical value 
r21(05)  = . 952, obtained from Table A25. 
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Table XVII 

r;onstruction of the probit distribution and 	and re-tests for normality 

Probit analysis w _normaiity test r n normality test 
C) - 
0 
a) 
C- w S 
a CU) 

Q)CJ C 
C) 
Ci CC) 

00 
HCJ1 

SC) U) .0 
O4-C 

CCC 
o C O 

0 
L 
Ci 

5) E 'H •H 
-P'C 

•H 	'r- 
'-D 

'C 
EU) 

a. 
4- 
4- 

U) DCCC) 
4-4-E 

L)4- H 
.0 

.-1 	Cr 
C D 

i x(i ) 
i-I -- 
21 

Y(x) X(ni+l)_X(i) a. 
1 

.  
i 

m M. 
1 

1 -9 .024 2.96 15 .4643 .033 -1.838 

2 -7 .071 3.52 9 .3185 .079 -1.412 

3 -7 .119 3.81 7 .2578 .126 -1.146 

4 -5 .167 4.04 5 .2119 .172 - 	.927 

5 -4 .214 4.21 4 .1736 .219 - 	.776 

6 -4 .262 4.37 4 .1399 .266 - 	.625 

7 -4 .309 4.50 4 .1092 .313 - 	.487 

8 -4 .357 4.63 3 .0804 .360 - 	.343 

9 -3 .405 4.78 2 .0530 .408 - 	.238 

10 -2 .452 4.5/ 1 I 	.0263 .453 - 	.118 

11 -2 .500 5.00 
- [ 	

0 .500 0 

12 -1 .548 5.13 .118 

13 -1 .595 5,24 .238 

14 -1 .643 5.37 .343 

15 0 .890 5.50 .487 

16 0 .738 5.53 .625 

17 0 .786 5.79 .776 

18 0 .833 5.96 .927 

19 0 .880 6.19 1.146 

20 2 .929 6.48 1.412 

21 6 .976 7.04 1.838 

-2.19 
b 	= 	14.7399 r21 	= 	.973 

s x  11.36 

b 1  .128 14.7399 
=.9561 21 

b 2  3.357 20x11.36 
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Probits 
Y 

, 0 

0 

 

0 

	

I 	 I 	 I 	 I 	 I 	 I 	 I 	 I 	 I 	 I 	 I 	 I 	 V 	 I 	 V 

	

-9 -8 	-7 	-6 	-5 -4 	-3 	-2 	-1 	0 	1 	2 	3 	4 	5 	6 

Figure 7 	Probit analysis of data of Table XVII 

2.7.1.6 Example of a comparison of two distributions by the 
Mann-Whitney U-test and van der Waerden's X-test 

Hatfield and Johansen (1972) tested the learning ability of insecticide treated 
salmon in a shuttle box conditioning apparatus. The fish had to learn to escape from 
a dark chamber through a door in a lighted one. Light therefore was the conditioned, 
electric shocks the unconditioned stimuli. The learning ability was measured by the 
number of trials. 	Prior to the learning procedure the -Fish underwent a 24-hour expo- 
sure to DOT at concentrations near 96-hour LC 50  obtaining results (Table XVIII) of which 
also ranks are reported to apply the Mann-Whitney-Wilcoxon U-test (2.2-32). 
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Table XVIII 

Transformation of observed values into ranks 

Control DOT 70 jig / 1 

No.of trials No.of trials 
Ranks Ranks 

x li  x2i  

7 3.5 19 15.5 

14 12 15 14 

3 2 14 12 

9 10 8 7 

8 7 19 15.5 

8 7 > 75 17.5 

2 1 > 75 17.5 

7 3.5 8 7 

14 12 

8 7 

n 1  = 8 R 1  = 46 n 2  = 10 R 2  = 125 

check: 	
1+n
-

2
--- • n = R 1  + R 2  = 171 

U 1  = 8 • 10 + 8.9  - 46 = 70 	; 	U 2  = 10 

Since U 2  (the smaller between U 1  and U 2 ) is smaller than the critical values 
reported in Table A-8, we must conclude that DOT has a significant influence on the 
learning process of salmons. 

Since the difference In 1  - 021 = 2<5, the same hypothesis could have been tested 
by van der Waerden's X-test (2.2.3'), transforming the ranks of one sample into fractions 

rj 

n+1 

and obtaining then the normal variates from Table A-3. We thus get for the smaller of both 
samples (the first): 

r• —a-- 	.18 	.63 	.11 	.53 	.37 	.37 	.05 	.18 	Sum 
n+1 

	

Y(x) -.915 	.332 	-1.227 	.075 	-.332 	-.332 	-1.645 	-.915 X = 5.773 

which is larger than all critical values reported in Table A-21 for n = 18, hence confirming 
the above results. 
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2.7.1.9 Example of a comparison of two distributions by the 
Kolmogoro -Ff-Smirnov test 

Another example of a comparison between two distributions is obtained recurring to 
the Kolmogoroff-Smlrnov test (2.2-19) with data in accordance to Hoppenheit (1977) 
regarding the cumulative relative frequencies of the production of eggs per egg-sac 
in population weekly exploited at rates of 10 and 90. The observed values of samples 
with n l = 100 and n 2  = 200 and the computations of the differences between the frequen-
cies are reported in Table XIX. 

Table XIX 

Differences between two distribution functions 

Eggs/sac 
High density 
cumulative 
frequencies 

F 1  

Low density 
cumulative 
frequencies 

F 2  

Differences 

F1 	- F 2 1 
0-10 0 0 0 

10-20 .05 .01 .04 

20-30 .15 .03 .12 

30-40 .50 .08 .42 

40-50 .80 .20 .60 

50-60 .90 .40 .50 

60-70 1. .70 .30 

70-80 1. .82 .18 

80-90 1. .90 .10 

90-100 1. 1. 0 

Comparing the largest difference with the critical value (2.2-37) we obtain 

/300 0 	= .60 > 1.48 n1,n2 	/ 20000 	= .18 

Hence both distributions are significantly different. 

2.7.1.10 Example of a comparison of two linked distributions 

In Table V are reported two determinations for each pretreatment. 	Hence both obser- 
vations for each individual are linked and the Wilcoxon pair difference test (2.2-33) is 
applied. 
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Let us consider sample 9 and evaluate the difference between the determinations, 

	

obtaining dj, like in example 2.7.1.7. 	Transform the absolute values of the non-null 
differences into a ranked sequence and obtain the sums of the ranks of the positive, T+, 
and negative, T, differences. The results are summarized in Table XX: 

	

(T+T 	= _______ = 139) 
2 

Table XX 

Ranks of observed values 

Non-null 
differences d 

Ranks of 
absolute values 

.002 

- .003 7 

-.002 5 

.009 13 

- .007 14.5 

- .007 14.5 

-.004 9.5 

-.001 2 

-.004 9.5 

- .002 5 

- .001 2 

- .009 16 

-.005 12 

-.004 9.5 

-.001 2 

-.004 9.5 

nd = 16 18 	+ 	118 	= 	138 

T = 18 	T = 18.17 - 18 = 118. 

The critical value for nd = 18 from Table A-ID results to be 
T16( 975) =30 

hence larger than the inferior of T and T, so that the hypothesis 
that both determinations lead to the same result must be rejected. 
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Applying the sign test (2.2 -42) we have nmin = 2 Of fld = 16. 	From Table A-22 it is 
seen to coincide with the 1% critical value. The alternative test (2.2-42') with 

16 nP 	= 8-(8-2) 	= 2.76 
min 

lies instead nearer to the 5% critical value, still confirming the previous results of a 
significant difference between the replications of the determinations. 

2.7.2 Examples of tests abut location measures 

2.7.2.1 Examples of a comparison of observed location measures 
with theoretic values 

The hypotheses of Ehapter 2.7.1.1 that 50% of the fish have a concentration level of 
0.1 can be set parametrically, like (2.3-1): 

H 0 : p = . 1 	; 	H 1 : 1.1>.1 

which means that the mean value of the concentrations is either 0.1 or higher. 

The possible tests can be based 

Ii) 	on the sample mean R = .2062 and the standard deviation s = .2196; 
(2.3-2) and Table A-4 

.2062-.1 
t = _________= 1.53 t 	= 1.833 

9 	.2196 	91.95) 

(ii) 	on the sample mean, and the sample range R = .766-.037 = .729; 
(2.3-3) and Table A-Il 

- 	.20B2-.1 
A 	- _ 	= .146X 	= .186 

10 	729 	10(.95) 

not parametrically onteGarnp1cmed1an 	= (.135 + .167) = .151 and 
the sample range; (2.3-4) and Tables A-2 and A-Il 

A 	
= 	.151- .1 	

= 	.060 	A 	= 	.186 
10 	1.175'.729 	io(.gs) 

distribution free on the sample median and its confidence interval 
(L, U) defined by (2.3-6) and (2.3 - 7) 

L 	= 	x 
(1) 	

= 	. 	
( n) 

037 	; 	U = x 	= .766 

In all four cases hypothesis H that the mean value of the concentration is 0.1 can be 
accepted: In the last case, because of the low number of observations, the confidence 
interval equals the sample range. To consider a less extreme case, we evaluate now the 5% 
confidence interval for the median of the differences of example 2.7.1.7  using (2.3-6), 
(2.3-7) and recurring to Table A-2, obtaining: 
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L = x (5) 	= 	-4 < jl < U = 	fl ( 17) 	= 0 

	

The hypothesis (2.3-5) H 0  : 	= 0, is hence acceptable as a limit situation. 

Thus, sample 9 can be said to belong to a population with the preassigned concentration 
mean of 0.1. 

2.7.2.2 Examples of a comparison of two samples 

Labat etal. (1974) observed disappearance of mucus cells in gill filaments following 
to exposure to copper sulfate obtaining the results of Table XXI. To test whether the ex-
posure to copper sulfate has a significant influence we can choose one of the tests of 2.3.2. 

Table XXI 

Visible mucus ceils/100 p 

Control 
x 1  

1 mg Cu/i • 24 h 
x 2  

16 10 

17 8 

12 10 

18 12 

11 13 

18 14 

12 6 

15 5 

16 7 

14 5 

18 
0 

10 

12 11 

9 

B 

n 1  = 12 n 2  = 14 

= 	14.917 R = 	9.143 

s = 5.992 s = 	7.978 

In order to know whether (2.3 - 8) or (2.3-10) i preferable we first test whether the 
variances can be assumed to be equal (homoscedastic),  supposing normality. This is done 
by test (2.4-6): 

F 	= 	
= 1.14 < F 	2.775 

13,11 	6.992 	13,1.95) 



Hence the variances can be assumed to be homoscedastic. Test (2.3-8) gives, 

14.917 - 9.143 	• 14 

	

t = ___________ 	=535 
2 	/11 • 6.992 + 13 • 7.978 	

/2 2  
12 + 14 

24 

Table XXII 

The population density per square centimetre of Simuliidae pupae on the 6 surfaces 
of 30 boulders from 3 stations in the Endrick system 
(From Maitland and Penney, 1967, with kind permission 
of Blackwell Scientific Publications Ltd., Oxford) 

Boulder Front 
(i) 

Upper 
(ii) 

Back 
(iii) 

Under 
(iv) 

Side 
(v) 

Side 
(vi) 

A 	I Absent 0.37 0.27 0.00 0.02 0.01 
2 0.01 0.04 0.79 0.16 0.17 0.04 
3 0.09 0.96 2.52 0.02 0.25 0.66 
4 0.00 0.68 2.49 0.16 0.01 0.30 
5 0.00 0.00 1.06 0.01 0.17 0.00 
6 0.00 0.01 1.97 0.00 0.00 0.00 
7 0.00 0.19 0.49 0.05 0.15 0.10 
8 0.00 0.01 0.71 0.00 1.69 0.01 
9 0.00 0.03 3.85 0.00 0.03 0.02 

10 0.00 0.08 0.09 0.00 0.00 0.11 
11 0.01 0.22 0.01 0.00 0.00 0.01 
12 0.04 0.36 0.07 0.04 0.11 1.05 
13 0.03 0.01 0.32 0.51 0.08 0.12 
14 0.00 0.02 0.08 0.00 0.00 0.00 

B 	1 0.00 0.03 0,05 0.00 Absent 0.05 
2 0.04 0.14 0.04 0.08 0.02 0.02 
3 0.02 0.02 0.30 0.01 0.07 0.00 
4 0.00 0.00 0.00 0.08 0.00 0.00 
5 0.00 0.08 0.07 0.00 0.00 0.00 
6 0.03 0.05 0.13 0.00 0.06 0.00 

C 	1 0.08 0.08 0.43 0.00 0.10 0.10 
2 0.09 0.45 0.23 0.00 0.04 0.00 
3 0.17 Absent 0.83 0.01 0.01 0.12 
4 0.00 0.13 0.06 0.00 0.02 0.02 
5 0.04 0.15 0.00 0.01 0.05 0.00 
B 0.04 0.68 0.95 0.00 Absent 0.00 
7 0.00 0.35 0.00 0.00 0.00 0.00 
8 0.00 0.11 0.06 0.00 0.03 0.07 
9 0.16 0.44 0.15 0.00 0.16 0.06 

10 0.10 0.11 0.19 0.33 0.29 0.27 
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From Table A-4 it is seen that this value is higher than all critical values reported 
there for 24 OF, hence the difference in numbers of stainable mucus cells in gill -Filaments 
of copper exposed trout and control fish is highly significant. 

In another experiment Maitland and Penney (1967) calculated a figure for the popula-
tion density in terms of the number of pupal cases per square centimetre of boulder surface. 
Results were obtained from 30 boulders: 14 from Station A (Drumtian), B from Station B 
(Finnich) and 10 from Station C (Blanc), (Table XXII). 

Th1R YYTTT 

A comparison of the mean population density of Simuliidae pupae on any two surfaces, 
taking into account the variation among 30 boulders examined from the Endrik system 
(N.B. Side (vi) was not compared with the other boulder surfaces since it was found 

not to be statistically different from side (v)) 

(From Maitland and Penney, 1967, with kind permission 
of Blackwell Scientific Publications Ltd., Oxford) 

Areas compared -t 
Oegrees 

of a 
freedom  

Conclusion 

A Front (i) with back (iii) 3.36 57 0.01 Highly significant 
(more pupation on back) 

B Upper (ii) 	with back (iii) 2.30 57 0.06-0.01 Significant 
(more pupation on back) 

C Under (iv) with back (iii) 3.34 58 <0.01 Highly significant 
(more pupation on back) 

D Side (v) 	with back 	(iii) 2.80 58 0.05-0.01 Significant 
(more pupation on back) 

E Side (v) 	with 	side 	(vi) 0.03 56 0.5 No significant difference 

F Upper (ii) 	with under (iv) 0.32 57 0.5 No significant difference 

G Side (v) with under (iv) 0.15 56 0.5 No significant difference 

H Front (i) 	with under (iv) 0.45 57 0.5 No significant difference 

I Front (i) 	with upper (ii) 0.37 56 0.5 No significant difference 

J Side (v) with upper (ii) 0.09 57 0.5 No significant difference 

K Side (v) with front (i) 0.17 55 0.5 No significant difference 
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A statistical analysis was made of the results from all three stations considered 
together. 	This was done by comparing the population density on any two surfaces, taking 
into account the variation among the 30 boulders examined (2.3 -8). From these results 
(Table XXIII) it can be seen that pupation is selective for the back surface and is ran-
dom between all the other surfaces. In the field experiments using bricks it was also 
found that pupation was selective for the back surface. 

The comparison of the distributions of Table XXI can also be performed by the median 
test (2.3-16) first building the fourfold table; 

le I I Sample 2 

Number of values > 	= 12 I 	8 	I 	2 	1 10 

Number of values 	= 12 I 	4 	I 	12 	118 

	

12 	1 	14 	126 

Since 	
2 4 	< 1 Fisher's exact test (2.2 -9) can be applied leading to P= .009 

(8+1) (12+1) 
confirming 	the result obtained by the t-test. 

Other comparisons like Scheff's t-test, the Mann-Whitney-Wilcoxon test, the run test 
and the Kolmogoroff-Smirnov test could also be used. 	Preference to one or the other method 
must be given according to the acceptance or not of the normality condition. 

2.7.2.3 Example of a comparison of two linked semples 

Consider again Chapter 2.7.1.10. To test whether the mean concentrations of both 
determinations differ or not significantly, we can recur to (2.3 - 15). The number of 
differences is m = 21 (and not 16, as in Table XX. since also the 5 null differences 
must be considered) and the means R 1 =  . 0785, R 2  = . 0807. Hence, 

.0785 - .0807IVT 
t = _________________ = 2.999 

20 	
/ . 000227 
/ 	20 

which is larger than the 5% critical value (= 2.088) so that we reject the null hypothesis 
as in Chapter 2.7.1.10: The mean concentration of the two determinations differs significantly. 
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2.7.2.4 Examples of multiple distribution free comparisons 

We use as example simplified data from Siebers and Bulnheim (1977) . The aim of the 
authors has been to test whether the rate of amino-acid uptake of the Enchytraeus albidus 
Is influenced by salinity. The test organisms were exposed to four concentrations (rows 
matched pairs) namely 20, 50, 120 and 240 JM/l of glycine. The rates of uptake (ilMoles/ 
g/h) were measured at salinities of 0, 10 ° , 20 °4 and 30 (columns), Table XXIV. 

Table XXIV 

Rates of uptake 	(pMoles/g/h)/salinities 

Glycine 
concentration 0 	°, 10 51Y 20 ? 30 % 

in water  

.0020 .0310 .252 .605 
20 

.0069 .0304 .368 .706 

.0055 .0591 .522 1.334 
50 

.0446 .0422 .517 .998 

.0085 .0729 .566 1.805 120 

.0144 .0740 .627 1.583 

.0424 .0943 .895 1.826 
240 

.0394 .1190 .644 1.710 

First we do not consider the different glycine concentrations and hence treat Table 
XXIV as a one-way classification, so that we can apply the test of Kruskal  Wallis (2.3- 22). 
We thus transform the uptake rates into ranks from I to 32 and sum for column totals R 
obtaining Table XXV. 

Table XXV 

Ranks of rates of uptake 

105 2 0 %y 30 

1 7 17 22 
3 6 18 25 
2 12 20 28 

11 9 19 27 
4 13 21 31 
5 14 23 29 

10 15 26 32 
8 16 24 30 

Sums R1  44 92 168 224 1+32 528 = ---- 32 
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Hence, 

12 (442 + 92 2  + 1682  + 2242) - 3.33 = 27.1 
32338 

which is highly significant: The uptake rate depends on the salinity. 

Now we consider also the four glycine concentration classes and apply the Friedman 
test (2.3-23) transforming the uptake rates of any row into ranks from I to 4, and sum 
again for columns totals, obtaining Table XXVI, from which a between columns test after 
elimination of the influence of the rows (= glycine concentration) is obtained: 

12 	(92 + 15 2  + 24 2  + 322) - 3.8(5) = 22.95 
485 

which confirms the above result as was to be expected in view of the consistency of the 
table. 

Table XXVI 

Row ranks of uptake rates 

20 30 

20 1 2 3 4 
1 2 3 4 

50 1 2 3 4 
2 1 3 4 

120 1 2 3 4 
1 2 3 4 

240 1 2 3 4 
1 2 3 4 

9 15 24 32 80 	= 	8 	
(1+4)4 

2 

2.7.2.5 Examples of multiple a posteriori comparisons 

In the analysis of variance of Table VIII we got to the conclusion that the 8 samples 
differ significantly between each other, because 

.099772 
F 	8.39 > F 	= 2.17 
7,62 	.011891 	7,62(.95) 
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It would be interesting to know if all sample means are widely spread or if only some 
differ particularly from the others.. 

We first follow the Student -Newrnan-Keuls procedure, building Table XXVII like (2.3-28). 

TH1 o VY\/TT 

Between mean differences 

•- 

o 
(I, 
0 

w 

Rank 	g 

Means X( g ) 

No.of mdi-
viduals 	ng  

ni 

1 

.069 

10 

2 

.072 

5 

3 

.080 

21 

4 

.123 

5 

5 

.204 

5 

6 

.209 

5 

7 	8 

.221 	.241 

10 	10 

1 .069 10 - 

2 .072 5 .003 - 

3 .080 21 .011 .008 - 

4 .123 5 .054 .051 .043 - 

5 .204 5 .135 .132 .124 .081 - 

6 .209 5 .140 .137 .129 .086 .005 - 

7 .221 10 .152 .149 .141 .098 .017 .012 - 

8 .241 10 .172 .169 .161 .118 .037 .032 .020 	- 

From Table VIII we get MS= .011891 with 62 OF. To apply (2.3- 29) we need from Table 
A-12 the studontized ranges k,62(.95)  for k = 2 ... 8, which are: 

2.828, 3.398, 3.735, 3.975, 4.161, 4.312, 4.439 

which when multiplied by /Fi 	= . 109 become: 

.308 ,.370,.407,.433,.454,.4713,. 484 

To test any particular range between two means of Table XXVII, we need only compare 
it with these quantities multiplied by v'(ni+ng)/2njng. The significant differences of 
Table XXVII are underlined, thus leading to the conclusion that either the sample means 
.069, .080 and/or the means .221 and .241 are those who affect mainly the sample MS. 



Another approach is that based on the construction of a dendrogram (Sokal and Sneath, 
1963), e.g. by single linkage, starting from the differences in Table XXVII. 

At the levels of .003 means 	and x(2)  join to a cluster, at the level of 
.005 k(s)  and  x(6)  join, at the level of .008 	joins to 	(j) and x(2) and 
so on, leading to the dendrograni of Figure 8. 

If we evaluate for each cluster the F-ratio with the same MSw,  the only ratio 
which is higher than the critical value is achieved when clusters with means 
[(i). X(2). 	(] and [(5). 	(6). X(7), X(8)] join to a single cluster. 	Hence, 
we may conclude, in contrast totheStudent -Newman-Keuls procedure that [(1)...(k)] 
form a homogeneous cluster, so as {(5)...(8)].  but that both clusters differ signi-
ficantly between them. The significance level is obviously not equal to that chosen 
for the F-ratio since the decision procedure is sequential. It is seen that the dendro-
gram gives a very good insight of the structure of the between samples variability. 

Between 
means 	 Order Ci) of means 

differences 
(1) W C3) 	M 	 () (&) 	() 	Cs) 

.003 

.005 

.008 

.012 

.020 

• O'3 

081 

I 	 I 	 I 
•006 	.012 	.018 	.02' 

Figure 8 	Dendrogram of the means 
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2.7.3 Examples of tests about variances 

The comparison of two variances by the F-ratio (2.4 -6) has already been carried out 
several times as for example in Section 2.7.2.2, and hence will not be repeated here. 

An example for the comparison of nine variances by the Cochran test can be found in 
Section 1.7.1. We will now see an example of Bartlett's and Sche-Ff's tests. 

Let us consider again the nine samples of Table V whose variances are for the first 
pretreatment and determination: 	- 

	

Samplen ° 	1 	2 	3 	4 	5 	5 	7 	8 	9 

	

Sample size ni 	 10 	10 	5 	10 	5 	5 	5 	10 	21 

	

10 4 x variances s 	443.67 99.73 9.47 5.18 8.94 39.54 82.25 209.59 19.74 

The pooled variance is: 

7778.95 104 > S 	 ___ 	__________ = 108.04 
En1-9 	72 

hence, 

= .0108 

To obtain Bartlett's test (2.4-10) we first evaluate 

k 	= I + 	(1.49 - -) = 1.0617 3 8 

and then 

= 04.74 , 

which is very high denoting that the samples are heteroscedastic, confirming the impression 
we got in Section 1.7.4: Probably some outliers or some wrong determinations among the 
observations have influenced the values of some variances. 

Another method of testing the hypothesis of homoscedasticity is that proposed by 
Scheff. 	We have divided randomly the -First 8 samples into 2 sub-groups each, and the 
9th sample into 3 sub-groups. 	For each sub-group we have evaluated the variances and 
their normalizing transformation (2.4-13) obtaining Table XXVIII. 	Then an ordinary 
ANOVA has been per-Formed (see Section 1.4.1) obtaining SS(011p) = 90.848, SS(c) = 7.211 
so that F810  = 15.71 which is highly significant confirming the former results. 



Table XXVIII 

Normalizing trans-Formation of variances x 10 6  

Sample Nos. 

Means 

1 2 3 4 5 6 7 8 9 

8.653 7.252 2.292 3.998 1.064 2.944 3.089 7.962 7.817 
7.624 

7.007 7.236 3.447 5.340 3.359 3.274 4.332 6.850 7.184 

7.8300 7.2440 2.8695 4.6690 2.2115 	3.109 3.7105 7.406 7.5417 

5.3008 

2.7.4 Examples of tests about regression and correlation 

2.7.4.1 Example of a simple regression problem 

Fishes placed in a rotating tube compensate for torque until a certain critical velo-
city is reached. 	The fish are then forced to rotate with the tube. 	The critical rate of 
rotation depends on the age (length) of the fish and of course an its health conditions. 
Lindehi and Schwanbom (1971) demonstrated the dependence in form of a linear regression 
of the critical rate of rotation per minute (r.p.m.) an the M.Mercury -OH content (mg/g.w.w.) 
of Leuciscus 2.euciscus, having obtained the following results: 

i 	r.p.m. 60 60 58 	50 52 55 	45 	55 	45 	22 	25 	27 	38 	39 	47 	23 

xj mg/g.w.w. 49 55 70 110 90 85 350 100 260 660 480 460 420 436 300 670 

The regression equation 4(x) is given by: 

4(x) = 61.333 - .0608 xj 

with a residual variance SR = 13.98 . Test t (2.5 -23) gives a very high value, according 
to a determination coefficient of .925, so that the existence of a regression is out of 
any doubt. 	To test whether the departures of the observed values yj from the regression 
line ct(xj) ( prevision errors, ej) are randomly distributed, we can recur to the run test 
(2.2-27). 	Ordering the Xj values we obtain: 

Xj 	49 	55 	70 	85 	90 	100 	110 	260 300 350 420 436 460 	480 ,  660 670 

+2.01 4.92 -1.17 -3.86 +2.75 -4.65 -.53 +3.91 +4.95 +.20+4.18 -6.37 -7.15 +.80 +2.40 



The sequence of the errors cj = y-4(x) can be considered as a sequence of positive 
and negative signs, hence as a sequence of 7 runs. 	Table A-9 gives us for n 1  = 6 (E 
number of negative signs) and n 2  = 10 ( number of positive signs) the acceptance 
interval (ct = . 05) of 4;13, where our computed number of runs is comprised. 	Hence 
the departures of the regression line can be assumed to be randomly distributed and the 
regression line accepted as satisfactory. 

Regression and correlation methods are widely used tools and -Further examples can be 
found in Sections 1.7.2, 1.7.5 and 1.7.6 

2.7.4.2 Example of a rank regression problem 

For simplicity, consider a sample of 10 Scorpaena porcus of example (1.7.6) for 1873, 
randomly chosen for j = 34, 37, 40, 7, 4, 11, 42, 3, 22, 30. 	Applying Grubbs' test for out- 
liers (2.6- 5), the values of the last sample (j = 42) must be suspected as outliers. 
Wanting to know the correlation between the mercury content Yj  and the body weight wj. 
without loosing the information of this last element, we can apply Spearman's (2.5-9) 
or Kendall's (2.5- 13) rank correlation coefficients. 	Herefore we write the ranks of 
one variable (say y) in increasing order and the corresponding ranks of the other variable, 
w, below them. 	To obtain Spearman's r 5  we evaluate then the sum of the squared differen- 
ces between the corresponding ranks, whereas for Kendall's T we count the number of all 
higher ranks on the right of the ranks of the non-ordered variable (w), obtaining the 
results summarized as follows: 

	

i 	1 	2 	3 	4 	5 	6 	7 	8 	9 	10 	Sums 

	

R 
yJ

, Ranks of y 	1 	2 	3 	4 	5 	6 	7 	8 	9 	10 

	

R 
3 
.Ranksofw 	1 	2 	4 	3 	5 	8 	B 	7 	9 	10 

(Ryj Rwj ) 2 	0 	0 	1 	1 	0 	4 	1 	1 	0 	0 	8 

	

Si=N(Rwk>Rw.)k>j 	9 	8 	6 	6 	5 	2 	3 	2 	1 	0 	42=S 

With the sums in the last columns we can now easily evaluate 

	

rs - I - 	
B  10•99 • 8 = .95 

and, 

	

T 	
= 	

109 • 42 - 1 = .87 

By inspection of Table A-14 we see that both tests are significant at the 1% level, 
hence the correlation hotwoen body weight and mercury content is significant. 
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2.7.5 Examples of miscellaneous tests 

2.7.5.1 Examples of tests for outliers 

We first analyse the first determinations of the 9 samples of Table V. Are there any 
outliers? 	Applying Dixon's (2.6-2) and Grubbs' test (2.6-5) we get the same response: 
individual n o  9 of sample I is an outlier since 

X(10)_X(9) 	.766-.266 
r10 	.686 

x (0) 	.766- .037 

and, 
x(10)_( 	. 766- .206 

T 10 	 .211 
= 	 =2.65 

which are both larger than the critical values of Table A-IS and A-lB. 

For sample 9, being n 9  > 20 we could also evaluate (2.6 -6): 

R 	.165 	3.75 z 21  = 	
= 	.044 = 

which lies between the critical values of Table A-17, hence confirming that no value must 
be suspected to be an outlier. 

Another example can be obtained by Mcllahon and Rigler (1962) who examined the heart-
beat rate of a Daphn-ia under control conditions, immediately after placing the animals in 
the observation chamber and after other 10-time intervals, obtaining: 265, 204, 188, 187, 
187, 189, 184, 190, 188, 182, 185. 	Both Dixon and Grubbs' test detect the first 2 values 
as outliers; hence we may conclude that the heart-beat rate has been normalized after 
2 time intervals. 

Another example has been seen in Section 2.7.4.2. 

2.7.5.2 Examples of tests about randomness 

We have already seen an example of the control of randomness in Section 2.7.4.1. 
Now we will see two applications obtained by Hoppenheit (1977). 

A Tisbe Iwlothuria culture (Copepoda, Harpacticoida) was permanently exposed to 148 
ig Cd/l and exploited weekly (30% removal). 	The log transformed population densities 
(per 10 ml) assessed before the weekly harvests, are (Figure 9): 

2.4362 2.5145 2.3636 2.5172 2.2900 2.4314 2.1818 2.4857 2.3747 

2.4502 2.4564 2.5119 2.0294 2.3802 2.6599 2.5340 2.1673 2.3483 

2.3802 2.2122 2.6955 2.3032 2.2718 2.2553 2.0128 2.3892 2.4728 
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We apply the mean square successive difference test (2.6-7), the circular serial 
correlation coefficient of lag h=1 (2.6-8) and the runs up and down test (2.6-9) for 
which the values of the differences between successive population densities are first 
transformed into + and - signs: 

we get the following results: 	- 

= 2.1889 	; 	R1,27  = -. 094 	; 	z = 3.94 

It may be underlined that the last test would be exactly the same even without log - 
transformations. 

The results are contradictory. 	Thefirst 2 parametric tests lie well within the 
confidence limits of Table A-lB hence leading to the acceptance of the hypothesis of random-
ness. 	Instead the third test for runs up and down tells us that there is no trend (because 
of the positive sign) but the fluctuations are too frequent to be considered randomly dis- 
tributed. 	This depends obviously on the non-parametric character of the test which does 
not make any difference between small and large differences. 	Since the distribution of 
the values can be assumed to be normal, and since we are mainly interested to test if 
there is a trend or not, we may rely on the first two tests. 	The sign test of Cox and 
Stuart (Section 2.6.2) confirms no trend. 

We consider the same experiment for which weekly 10% were removed, obtaining 
(Figure 10): 

	

2.1903 	2.3075 	2.6031 	2.6532 	2.7388 	2.3997 	2.4378 	2.4742 	2.5145 

	

2.2833 	2.0453 	2.3284 	2.5185 	2.4584 	2.3858 	2.3484 	2.2967 	2.4330 

	

2.1987 	1.8082 	2.1106 	2.5276 	1.8865 	1.4472 	2.0607 

with the signs of the successive differences: 

= .9774 	; 	R15  = -. 805 	; 	z = -2.63 

All tests lie under the lowest critical value and lead to the conclusion: 

The data are not randomly distributed because of the presence of 
a trend (r 2 , IRL negative sign of z). 

The trend is decreasing (sign of R). 

Only the sign test of Cox and Stuart with 3 positive signs of 12 does not reach the 5% 
significance level. But this is mainly due to the fact that this test is based on the dif-
ferences, hence on half as much values as the other tests, so that the sampling variance 
naturally increases. 
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Figure 9 	Time sequence of the log transformed population densities of a 
Tisbe holothuriae culture (Copepoda, Harpactoida) with 30% weekly removal 
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Figure 10 	Time sequence of the log transformed population densities of a 
Tisbe holothuriae culture (Copepoda, Harpactoida) with 10% 
weekly removal 
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ANNEX 

STATISTICAL TABLES 

Table A-I 

Common logarithms of factorials 
(from Rohlf and Sokal, 1969, with kind permission of W.H. Fieeman and Co., San Francisco ©) 

0 10 20 30 40 

0 0.0000 6.5598 18.3861 32.4237 47.9116 

1 0.0000 7.6012 19.7083 33.9150 49.5244 

2 0.3010 8.6803 21.0508 35.4202 51.1477 

3 0.7782 9.7943 22.4125 36.9387 52.7811 

4 1.3802 10.9404 23.7927 38.4702 54.4246 

5 2.0792 12.1165 25.1906 40.0142 56.0778 

6 2.8573 13.3206 26.6056 41.5705 57.7406 

7 3.7024 14.5511 28.0370 43.1387 59.4127 

8 4.6055 15.8063 29.4841 44.7185 61.0939 

9 5.5598 17.0851 30.9465 46.3096 62.7841 

Table A-2 

Correction factors for ranges c, dn  and g and critical values for the median h 
(after Stange and Henning, 1966, and Sachs, 1970, 
with kind permission of Springer Verlag, Berlin) 

n Cn  d gn h 

2 1.000 1.128 .756 - 

3 1.160 1.693 .525 - 

4 1.092 2.059 .427 - 

5 1.198 2.326 .371 - 

6 1.136 2.534 .335 0 
7 1.214 2.704 .308 0 
8 1.159 2.847 .288 0 
9 1.223 2.970 .272 1 

10 1.175 3.078 .259 1 

11 1.229 3.173 .248 1 
12 1.190 3.258 .239 2 
13 1.233 3.336 .231 2 
14 1.195 3.407 .224 2 
15 1.237 3.472 .217 3 
16 1.202 3.532 .212 3 
17 1.238 3.588 .207 4 
18 1.207 3.640 .203 4 
19 1.239 3.689 .199 4 
20 1.212 3.735 .195 5 
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Table A-3 

Critical values of the normal variate z 
(-z 	=z 

(a) 	(1-a) 
(from Diem, 1982, with kind permission of J.R. Cei8y, Basal) 

4 

11 

 

a 

1 / r 

a- 	0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 

0.50 0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0201 0.0226 
0.51 0.0251 0.0276 0.0301 0.0326 0.0351 0.0376 0.0401 0.0426 0.0451 0.0476 
0.52 0.0502 0.0527 0.0552 0.0577 0.0602 0.0627 0.0652 0.0677 0.0702 0.0728 
0.53 0.0753 0.0778 0.0803 0.0828 0.0853 0.0878 0.0904 0.0929 0.0954 0.0979 
0.54 0.1004 0.1030 0.1055 0.1080 0.1105 0.1130 0.1156 0.1181 0.1206 0.1231 

0.55 0.1257 0.1282 0.1307 0.1332 0.1358 0.1383 0.1408 0.1434 0.1459 0.1484 
0.56 0.1510 0.1535 0.1560 0.1586 0.1611 0.1637 0.1662 0.1687 0.1713 0.1738 
0.57 0.1764 0.1789 0.1815 0.1840 0.1866 0.1891 0.1917 0.1942 0.1968 0.1993 
0.58 0.2019 0.2045 0.2070 0.2096 0.2121 0.2147 0.2173 0.2198 0.2224 0.2250 
0.59 0.2275 0.2301 0.2327 0.2353 0.2378 0.2404 0.2430 0.2456 0.2482 0.2508 

0.60 0.2533 0.2559 0.2585 0.2611 0.2637 0.2663 0.2689 0.2715 0.2741 0.2767 
0.61 0.2793 0.2819 0.2845 0.2871 0.2898 0.2924 0.2950 0.2976 0.3002 0.3029 
0.62 0.3055 0.3081 0.3107 0 3134 0.3160 0.3186 0.3213 0.3239 0.3266 0.3292 
0.63 0.3319 0.3345 0.3372 0.3398 0.3425 0.3451 0.3478 0.3505 0.3531 0.3558 
0.64 0.3585 0.3611 0.3638 0.3665 0.3692 0.3719 0.3745 0.3772 0.3799 0.3826 

0.65 0.3853 0.3880 0.3907 0.3934 0.3961 0.3989 0.4016 0.4043 0.4070 0.4097 
0.66 0.4125 0.4152 0.4179 0.4207 0.4234 0.4261 0.4289 0.4316 0.4344 0.4372 
0.67 0.4399 0.4427 0.4454 0.4482 0.4510 0.4538 0.4565 0.4593 0.4621 0.4649 
0.68 0.4677 0.4705 0.4733 0.4761 0.4789 0.4817 0.4845 0.4874 0.4902 0.4930 
0.69 0.4959 0.4987 0.5015 0.5044 0.5072 0.5101 0.5129 0.5158 0.5187 0.5215 

0.70 0.5244 0.5273 0.5302 0.5330 0.5359 0.5388 0.5417 0.5446 0.5476 0.5505 
0.71 0.5534 0.5563 0.5592 0.5622 0.5651 0.5681 0.5710 0.5740 0.5769 0.5799 
0.72 0.5828 0.5858 0.5888 0.5918 0.5948 0.5978 0.6008 0.6038 0.6068 0.6098 
0.73 0.6128 0.6158 0.6189 0.6219 0.6250 0.6280 0.6311 0.6341 0.6372 0.6403 
0.74 0.6433 0.6464 0.6495 0.6526 0.6557 0.6588 0.6620 0.6651 0.6682 0.6713 

0.75 0.6745 0.6776 0.6808 0.6840 0.6871 0.6903 0.6935 0.6967 0.6999 0.7031 
0.76 0.7063 0.7095 0.7128 0.7160 0.7192 0.7225 0.7257 0.7290 0.7323 0.7356 
0.77 0.7388 0.7421 0.7454 0.7488 0.7521 0.7554 0.7588 0.7621 0.7655 0.7688 
0.78 0.7722 0.7756 0.7790 0.7824 0.7858 0.7892 0.7926 0.7961 0.7995 0.8030 
0.79 0.8064 0.8099 0.8134 0.8169 0.8204 0.8239 0.8274 0.8310 0.8345 0.8381 

0.80 0.8416 0.8452 0.8488 0.8524 0.8560 0.8596 0.8633 0.8669 0.8705 0.8742 
0.81 0.8779 0.8816 0.8853 0.8890 0.8927 0.8965 0.9002 0.9040 0.9078 0.9116 
0.82 0.9154 0.9192 0.9230 0.9269 0.9307 0.9346 0.9385 0.9424 0.9463 0.9502 
0.83 0.9542 0.9581 0.9621 0.9661 0.9701 0.9741 0.9782 0.9822 0.9863 0.9904 
0.84 0.9945 0.9986 1.0027 1.0069 1.0110 1.0152 1.0194 1.0237 1.0279 1.0322 

0.85 1.0364 1.0407 1.0450 1.0494 1.0537 1.0581 1.0625 1.0669 1.0714 1.0758 
0.86 1.0803 1.0848 1.0893 1.0939 1.0985 1.1031 1.1077 1.1123 1.1170 1.1217 
0.87 1.1264 1.1311 1.1359 1.1407 1.1455 1.1503 1.1552 1.1601 1.1650 1.1700 
0.88 1.1750 1.1800 1.1850 1.1901 1.1952 1.2004 1.2055 1.2107 1.2160 1.2212 
0.89 1.2265 1.2319 1.2372 1.2426 1.2481 1.2536 1.2591 1.2646 1.2702 1.2759 

0.90 1.2816 1.2873 1.2930 1.2988 1.3047 1.3106 1.3165 1.3225 1.3285 1.3346 
0.91 1.3408 1.3469 1.3532 1.3595 1.3658 1.3722 1.3787 1.3852 1.3917 1.3984 
0.92 1.4051 1.4118 1.4187 1.4255 1.4325 1.4395 1.4466 1.4538 1.4611 1.4684 
0.93 1.4758 1.4833 1.4909 1.4985 1.5063 1.5141 1.5220 1.5301 1.5382 1.5464 
0.94 1.5548 1.5632 1.5718 1.5805 1.5893 1.5982 1.6072 1.6164 1.6258 1.6352 

0.95 1.6449 1.6546 1.6646 1.6747 1.6849 1.6954 1.7060 1.7169 1.7279 1.7392 
0.96 1.7507 1.7624 1.7744 1.7866 1.7991 1.8119 1.8250 1.8384 1.8522 1.8663 
0.97 1.8808 1.8957 1.9110 1.9268 1.9431 1.9600 1.9774 1.9954 2.0141 2.0335 
0.98 2.0537 2.0749 2.0969 2.1201 2.1444 2.1701 2.1973 2.2262 2.2571 2.2904 
0.99 2.3263 2.3656 2.4089 2.4573 2.5121 2.5758 2.6521 2.7478 2.8782 3.0902 



- 101 - 

Table A-4 

Critical values of the tv variate (-t() = t(1_ a ) )  
(after Diem, 1962, with kind permission of J.R. Geigy, Basel) 

t \)  
- Lt 	 2 

V c=.05 .025 .01 .005 

1 6.314 12.706 31.821 63.657 

2 2.920 4.303 6.965 9.925 

3 2.353 3.182 4.541 5.841 

4 2.132 2.776 3.747 4.604 

5 2.015 2.571 3.365 4.032 

6 1.943 2.447 3.143 3.707 

7 1.895 2.365 2.998 3.499 

8 1.860 2.306 2.896 3.355 

9 1.833 2.262 2.821 3.250 

10 1.813 2.228 2.764 3.169 

11 1.796 2.201 2.718 3.106 

12 1.782 2.179 2.681 3.055 

13 1.771 2.160 2.650 3.012 

14 1.761 2.145 2.624 2.977 

15 1.753 2.131 2.602 2.947 

v cz=.05 .025 .01 .005 

16 1.746 2.120 2.583 2.921 

17 1.740 2.110 2.567 2.898 

18 1.734 2.101 2.552 2.878 

19 1.729 2.093 2.539 2.861 

20 1.725 2.086 2.528 2.845 

21 1.721 2.080 2.518 2.831 

22 1.717 2.074 2.508 2.819 

23 1.714 2.069 2.500 2.807 

24 1.711 2.064 2.492 2.797 

25 1.708 2.060. 2.485 2.787 

26 1.706 2.056 2.479 2.779 

27 1.703 2.052 2.473 2.771 

28 1.701 2.048 2.467 2.763 

29 1.699 2.045 2.462 2.756 

30 1.697 2.042 2.457 2.750 

40 1.684 2.021 2.423 2.704 

50 1.676 2.009 2.403 2.678 

60 1.671 2.000 2.390 2.660 

80 1.664 1.990 2.374 2.639 

100 1.660 1.984 2.364 2.626 

00 1.645 1.960 2.326 2.576 
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Table A-5 

Critical values of the x 	variate  
(from Thompson, 	1941 	(v - 1-30), 	and Rohlf and SoIcal, 	1969,  
(v - 31-50), with kind permission of Biometrika Trustees, 
London, 	and of W.H. 	Freeman and Co., San Francisco (D) 

0.995 	0.975 	0.90 	0.5 	0.1 

1 

0.05 0.025 

II 	IIIIlfflhim.-.. 

0.01 0.005 	v 

1 .000 .000 0.016 0.455 2.706 3.841 5.024 6.635 7.879 1 
2 0.010 0.051 0.211 1.386 4.605 5.991 7.378 9.210 10.597 2 
3 0.072 0.216 0.584 2.366 6.251 7.815 9.348 11.345 12.838 3 
4 0.207 0.484 1.064 3.357 7.779 9.488 11.143 13.277 14.860 4 
5 0.412 0.831 1.610 4.351 9.236 11.070 12.832 15.086 16.750 5 

6 0.676 1.237 2.204 5.348 10.645 12.592 14.449 16.812 18.548 6 
7 0.989 1.690 2.833 6.346 12.017 14.067 16.013 18.475 20.278 7 
8 1.344 2.180 3.490 7.344 13.362 15.507 17.535 20.090 21.955 8 
9 1.735 2.700 4.168 8.343 14.684 16.919 19.023 21.666 23.589 9 

10 2.156 3.247 4.865 9.342 15.987 18.307 20.483 23.209 25.188 10 

11 2.603 3.816 5.578 10.341 17.275 19.675 21.920 24.725 26.757 11 
12 3.074 4.404 6.304 11.240 18.549 21.026 23.337 26.217 28.300 12 
13 3.565 5.009 7.042 12.340 19.812 22.362 24.736 27.688 29.819 13 
14 4.075 5.629 7.790 13.339 21.064 23.685 26.119 29.141 31.319 14 
15 4.601 6.262 8.547 14.339 22.307 24.996 27.488 30.578 32.801 15 

16 5.142 6.908 9.312 15.338 23.542 26.296 28.845 32.000 34.267 16 
17 5.697 7.564 10.085 16.338 24.769 27.587 30.191 33.409 35.718 17 
18 6.265 8.231 10.865 17.338 25.989 28.869 31.526 34.805 37.156 18 
19 6.844 8.907 11.651 18.338 27.204 30.144 32.852 36.191 38.582 19 
20 7.434 9.591 12.443 19.337 28.412 31.410 34.170 37.566 39.997 20 

21 8.034 10.283 13.240 20.337 29.615 32.670 35.479 38.932 41.401 21 
22 8.643 10.982 14.042 21.337 30.813 33.924 36.781 40.289 42.796 22 
23 9.260 11.688 14.848 22.337 32.007 35.172 38.076 41.638 44.181 23 
24 9.886 12.401 15.659 23.337 33.196 36.415 39.364 42.980 45.558 24 
25 10.520 13.120 16.473 24.337 34.382 37.652 40.646 44.314 46.928 25 

26 11.160 13.844 17.292 25.336 35.563 38.885 41.923 45.642 48.290 26 
27 11.808 14.573 18.114 26.336 36.741 40.113 43.194 46.963 49.645 27 
28 12.461 15.308 18.939 27.336 37.916 41.337 44.461 48.278 50.993 28 
29 13.121 16.047 19.768 28.336 39.088 42.557 45.722 49.588 52.336 29 
30 13.787 16.791 20.599 29.336 40.256 43.773 46.979 50.892 53.672 30 

31 14.458 17.539 21.434 30.336 41.422 44.985 48.232 52.192 55.003 31 
32 15.135 18.291 22.271 31.336 42.585 46.194 49.481 53.486 56.329 32 
33 15.816 10.047 23.110 32.336 43.745 47.400 50.725 54.776 57.649 33 
34 16.502 19.806 23.952 33.336 44.903 48.602 51.966 56.061 58.964 34 
35 17.192 20.570 24.797 34.336 46.059 49.802 53.203 57.342 60.275 35 

36 17.887 21.336 25.643 35.336 47.212 50.998 54.437 58.619 61.582 36 
37 18.586 22.106 26.492 36.335 48.363 52.192 55.668 59.893 62.884 37 
38 19.289 22.879 27.343 37.335 49.513 53.384 56.896 61.162 64.182 38 
39 19.996 23.654 28.196 38.335 50.660 54.572 58.120 62.428 65.476 39 
40 20.707 24.433 29.051 39.335 51.805 55.758 59.342 63.691 66.766 40 

41 21.421 25.215 29.907 40.335 52.949 56.942 60.561 64.950 68.053 41 
42 22.139 25.999 30.765 41.335 54.090 58.124 61.777 66.206 69.336 42 
43 22.860 26.786 31.625 42.335 55.230 59.304 62.990 67.460 70.616 43 
44 23.584 27.575 32.487 43.335 56.369 60.481 64.202 68.710 71.893 44 
45 24.311 28.366 33.350 44.335 57.505 61.656 65.410 69.957 73.166 45 

46 25.042 29.160 34.215 45.335 58.641 62.830 66.617 71.202 74.437 46 
47 25.775 29.956 35.081 46.335 59.774 64.001 67.821 72.443 75.704 47 
48 26.511 30.755 35.949 47.335 60.907 65.171 69.023 73.683 76.969 48 
49 27.250 31.555 36.818 48.335 62.038 66.339 70.222 74.920 78.231 49 
50 27.991 32.357 37.689 49.335 63.167 67.505 71.420 76.154 79.490 50 

For values of V > 50 	the X 1  may be normalized by the transformation 

z + - 

which can be compared with the critical values of 
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Table A-6.1 

Oritical values of the F 
\i V2 

variate at the .95 confidence level 
'  

(from Merrington and Thompson, 1943, with kind permission of Biometrika Trustees, London) 

Degrees of 
freedom in  

Degrees of freedom in numerator, 

denomi- 
nator, V2 1 2 3 4 5 6 8 12 24 

1 161.4 199.5 215.7 224.6 230.2 234.0 238.9 243.9 20.1 254.3 
2 18.51 19.00 19.16 19.23 19.30 19.33 19.37 19.41 19.45 19.50 
3 10.13 9.55 9.28 9.12 9.01 8.94 8.85 8.74 8.64 8.53 
4 7.71 6.94 6.59 6.39 6.26 6.16 6.04 5.91 5.77 5.63 
5 6.61 5.79 5.41 5.19 5.05 4.95 4.82 4.68 4.53 4.36 

6 5.99 5.14 4.76 4.53 4.39 4.28 4.15 4.00 3.84 3.67 
7 5.59 4.74 4.35 4.12 3.97 3.87 3.73 3.57 3.41 3.23 
8 5.32 4.46 4.07 3.84 3.69 3.58 3.44 3.28 3.12 2.93 
9 5.12 4.26 3.86 3.63 3.48 3.37 3.23 3.07 2.90 2.71 

10 4.96 4.10 3.71 3.48 3.33 3.22 3.07 2.91 2.74 2.54 

11 4.84 3.98 3.59 3.36 3.20 3.09 2.95 2.79 2.61 2.40 
12 4.75 3.89 3.49 3.26 3.11 3.00 2.85 2.69 2.51 2.30 
13 4.67 3.81 3.41 3.18 3.03 2.92 2.77 2.60 2.42 2.21 
14 4.60 3.74 3.34 3.11 2.96 2.85 2.70 2.53 2.35 2.13 
15 4.54 3.68 3.29 3.06 2.90 2.79 2.64 2.02 2.39 2.07 

16 4.49 3.63 3.24 3.01 2.85 2.74 2.59 2.42 2.24 2.01 
17 4.45 3.59 3.20 2.96 2.91 2.70 2.55 2.38 2.19 1.96 
18 4.41 3.55 3.16 2.93 2.77 2.66 2.51 2.34 2.15 1.92 
19 4.38 3.52 3.13 2.90 2.74 2.63 2.48 2.31 2.11 1.88 

20 4.35 3.49 3.10 2.87 2.71 2.60 2.45 2.28 2.08 1.84 

21 4.32 3.47 3.07 2.84 2.68 2.57 2.42 2.25 2.05 1.81 
22 4.30 3.44 3.05 2.82 2.66 2.55 2.40 2.23 2.03 1.78 
23 4.28 3.42 3.03 2.80 2.64 2.53 2.37 2.20 2.01 1.76 
24 4.26 3.40 3.01 2.78 2.62 2.51 2.36 2.18 1.98 1.73 
25 4.24 3.39 2.99 2.76 2.60 2.49 2.34 2.16 1.96 1.71 

26 4.23 3.37 2.98 2.74 2.59 2.47 2.32 2.15 1.95 1.69 
27 4.21 3.35 2.96 2.73 2.57 2.46 2.31 2.13 1.93 1.67 
28 4.20 3.34 2.95 2.71 2.56 2.45 2.29 2.12 1.91 1.65 
29 4.18 3.33 2.93 2.70 2.55 2.43 2.28 2.10 1.90 1.64 
30 4.17 3.32 2.92 2.69 2.53 2.42 2.27 2.09 1.89 1.62 

40 4.08 3.23 2.84 2.61 2.45 2.34 2.18 2.04 1.79 1.51 
60 4.00 3.15 2.76 2.53 2.37 2.25 2.10 1.92 1.70 1.39 

120 3.92 3.07 2.68 2.45 2.29 2.17 2.02 1.83 1.61 1.25 

3.84 3.00 2.60 2.37 2.21 2.10 1.94 1.75 1.52 1.00 
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Table A-6.2 

Critical values of the F1,2  variate at the .975 confidence level 
(from Merrington and Thompson. 1943, with kind permission of Biometrika Trustees, Lordon) 

Degrees of 
freedom in 

Degrees of freedom in numerator,v 1  

denomi- 
nator, v 2  1 2 3 4 5 6 8 12 24 

1 647.8 799.5 864.2 899.6 921.8 937.1 956.7 976.7 997.2 1018 
2 38.51 39.00 39.17 39.25 39.30 39.33 39.37 39.41 39.46 39.50 
3 17.44 16.04 15.44 15.10 14.88 14.73 14.54 14.34 14.12 13.90 
4 12.22 10.65 9.98 9.60 9.36 9.20 8.98 8.75 8.51 8.26 
5 10.01 8.43 7.76 7.39 7.15 6.98 6.76 6.52 6.28 6.02 

6 8.81 7.26 6.60 6.63 5.99 5.82 5.60 5.37 5.12 4.85 
7 8.07 6.54 5.89 5.52 5.29 5.12 4.89 4.67 4.42 4.14 
8 7.57 6.06 5.42 5.05 4.82 4.65 4.43 4.20 3.95 3.67 
9 7.21 5.71 5.08 4.72 4.48 4.32 4.10 3.87 3.61 3.33 

10 6.94 5.46 4.83 4.47 4.24 4.07 3.85 3.62 3.37 3.08 

11 6.72 5.26 4.63 4.28 4.04 3.88 3.66 3.43 3.17 2.88 
12 6.55 5.10 4.47 4.12 3.89 3.73 3.51 3.28 3.02 2.72 
13 6.41 4.97 4.35 4.00 3.77 3.60 3.39 3.15 2.89 2.60 
14 6.30 4.86 4.24 3.89 3.66 3.50 3.29 3.05 2.79 2.49 
15 6.20 4.77 4.15 3.80 3.58 3.41 3.20 2.96 2.70 2.40 

16 6.12 4.69 4.08 3.73 3.50 3.34 3.12 2.89 2.63 2.32 
17 6.04 4.62 4.01 3.66 3.44 3.28 3.06 2.82 2.56 2.25 
18 5.98 4.56 3.95 3.61 3.38 3.22 3.01 2.77 2.50 2.19 
19 5.92 4.51 3.90 3.56 3.33 3.17 2.76 2.72 2.45 2.13 
20 5.87 4.46 3.86 3.51 3.29 3.13 2.91 2.68 2.41 2.09 

21 5.83 4.42 3.82 3.48 3.25 3.09 2.87 2.64 2.37 2.04 
22 5.79 4.38 3.78 3.44 3.22 3.05 2.84 2.60 2.33 2.00 
23 5.75 4.35 3.75 3.41 3.18 3.02 2.81 2.57 2.30 1.97 
24 5.72 4.32 3.72 3.38 3.15 2.99 2.78 2.54 2.27 1.94 
25 5.69 4.29 3.69 3.35 3.13 2.97 2.75 2.51 2.24 1.91 

26 5.66 4.27 3.67 3.33 3.10 2.94 2.73 2.49 2.22 1.88 
27 5.63 4.24 3.65 3.31 3.08 2.92 2.71 2.47 2.19 1.85 
28 5.61 4.22 3.63 3.29 3.06 2.90 2.69 2.45 2.17 1.83 
29 5.59 4.20 3.60 3.27 3.04 2.88 2.67 2.43 2.15 1.81 
30 5.57 4.18 3.59 3.25 3.03 2.87 2.65 2.41 2.14 1.79 

40 5.42 4.05 3.46 3.13 2.90 2.74 2.53 2.29 2.01 1.64 
60 5.29 3.93 3.34 3.01 2.79 2.63 2.41 2.17 1.88 1.48 

120 5.15 3.80 3.23 2.89 2.67 2.52 2.30 2.05 1.76 1.31 

5.02 3.69 3.11 2.79 2.57 2.41 2.19 1.94 1.64 1.00 
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Table A-6.3 

Critical values of the F 1  v2 variate at the .99 confidence level 

(from Merrington and Thompson, 1943, with kind permission of Biometrika Trustees, London) 

Degrees of 
freedom in  

Degrees of freedom in numerator, 
1 

denomi- 
nator, 1 2 3 4 5 6 8 12 24 

1 4052 4999.5 5403 5625 5764 5859 5981 6106 6235 6366 
2 98.50 99.00 99.17 99.25 99.30 99.33 99.37 99.42 99.46 99.50 
3 34.12 30.82 29.46 28.71 28.24 27.91 27.49 27.05 26.60 26.13 
4 21.20 18.00 16.69 16.98 15.52 15.21 14.80 14.37 13.93 13.46 
5 16.26 13.27 12.06 11.39 10.97 10.67 10.29 9.89 9.47 9.02 

6 13.75 10.92 9.78 9.15 8.75 8.47 8.10 7.72 7.31 6.88 
7 1225 9.55 8.45 7.85 7.46 7.19 6.84 6.47 6.07 5.65 
8 11.26 8.65 7.59 7.01 6.63 6.37 6.03 5.67 5.28 4.86 
9 10.56 8.02 6.99 6.42 6.06 5.80 5.47 5.11 4.73 4.31 

10 10.04 7.56 6.55 5.99 5.64 5.39 5.06 4.71 4.33 3.91 

11 9.65 7.21 6.22 5.67 5.32 5.07 4.74 4.40 4.02 3.60 
12 9.33 6.93 5.95 41 5.06 4.82 4.50 4.16 3.78 3.36 
13 9.07 6.70 5.74 5.21 4.86 4.62 4.30 3.96 3.59 3.17 
14 8.86 6.51 5.56 5.04 4.69 4.46 4.14 3.80 3.43 3.00 
15 8.68 6.36 5.42 4.89 4.56 4.32 4.00 3.67 3.29 2.87 

16 8.53 6.23 5.29 4.77 4.44 4.20 3.89 3.55 3.18 2.75 
17 8.40 6.11 5.19 4.67 4.34 4.10 3.79 3.46 3.08 2.65 
18 8.28 6.01 5.09 4.58 4.25 4.01 3.71 3.37 3.00 2.57 
19 8.19 5.93 5.01 4.55 0 1  4.17 3.94 3.63 3.30 2.92 2.49 
20 8.10 5.85 4.94 4.43 4.10 3.87 3.56 3.23 2.86 2.42 

21 8.02 5.75 4.87 4.37 4.04 3.81 3.51 3.17 2.80 2.36 
22 7.95 5.72 4.82 4.31 3.99 3.76 3.45 3.12 2.75 2.31 
23 7.88 5.66 4.76 4.26 3.94 3.71 3.41 3.07 2.70 2.26 
24 7.82 5.61 4.72 4.22 3.90 3.67 3.36 3.03 2.66 2.21 
25 7.77 5.57 4.68 4.18 3.86 3.63 3.32 2.99 2.62 2.17 

26 7.72 5.53 4.64 4.14 3.82 3.59 3.29 2.96 2.58 2.13 
27 7.68 5.49 4.60 411 3.78 3.56 3.26 2.93 2.55 2.10 
28 7.64 5.45 4.57 4..07 3.75 3.53 3.23 2.90 2.52 2.06 
29 7.60 5.42 4.54 4.04 3.73 3.50 3.20 2.87 2.49 2.03 
30 7.56 5.39 4.51 4.02 3.70 3.47 3.17 2.84 2.47 2.01 

40 7.31 5.18 4.31 3.83 3.51 3.29 2.99 2.66 2.29 1.80 
60 7.08 4.98 4.13 3.65 3.34 3.12 2.82 2.50 2.12 1.60 

120 6.85 4.79 3.95 3.48 3.17 2.96 2.66 2.34 1.95 1.38 

6.63 4.61 3.78 3.32 3.02 2.80 2.51 2.18 1.79 1.00 
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Table A-7 

Critical values of the Kolrnogoroff-Srnirnov test 
(from Miller, 1956, with Kind permission of the American Statistical Association, Washington, D.C.) 

0.2 0.1 0.05 0.02 0.01 nX 0.2 0.1 0.05 0.02 0.01 

.90000 .95000 .97500 .99000 .99500 51 .14697 .16796 .18659 .20864 .22386 

.68377 .77639 .84189 .90000 .92929 52 .14558 .16637 .18482 .20667 .22174 

.56481 .63604 .70760 .78456 .82900 53 .14423 .16483 .18311 .20475 .21968 

.49265 .6522 .62394 .68887  .73424 54 .14292 .16332 .18144 .20289 .21768 

.44698 .50945 .56328 .62718 .66853 55 .14164 .16186 .17981 .20107 .21574 

.41037 .46799 .51926 .57741 .61661 56 .14040 .16044 .17823 .19930 .21384 

.38148 .43607 .48342 .53844 .57581 57 .13919 .15906 .17669 .19758 .21199 

.35831 .40962 .45427 .50654 .54179 58 .13801 .15771 .17519 .19590 .21019 

.33910 .38746 .43001 .47960 .51332 59 .13686 .15639 .17373 .19427 .20844 

.32260 .36866 .40925 .45662 .48893 60 .13573 .15511 .17231 .19267 .20673 

.30829 .35242 .39122 .43670 .46770 61 .13464 .15385 .17091 .19112 .20506 

.29577 .33815 .37543 .41918 .44905 62 .13357 .15263 .16956 .18960 .20343 

.28470 .32549 .36143 .40362 .43247 63 .13253 .15144 .16823 .18812 .20184 

.27481 .31417 .34890 .38970 .41762 64 .13151 .15027 .16693 .18667 .20029 

.26588 .30397 .33760 .37713 .40420 65 .13052 .14913 .16567 .18525 .19877 

.25778 .29472 .32733 .36571 .39201 66 .12954 .14802 .16443 .18387 .19729 

.25039 .28627 .31796 .35528 .38086 67 .12859 .14693 .16322 .18252 .19584 

.24360 .27851 .30936 .34569 .37062 68 .12766 .14587 .16204 .18119 .19442 

.23735 .27136 .30143 .33685 .36117 69 .12675 .14483 .16088 .17990 .19303 

.23156 .26473 .29408 .32866 .35241 70 .12586 .14381 .15975 .17863 .19167 

.22617 .25858 .28724 .32104 .34427 71 .12499 .14281 .15864 .17739 .19034 

.22115 .25283 .28087 .31394 .33666 72 .12413 .14183 .15755 .17618 .18903 

.21645 .24746 .27490 .30728 .32954 73 .12329 .14087 .15649 .17498 .18776 

.21205 .24242 .26931 .30104 .32286 74 .12247 .13993 .15544 .17382 .18650 

.20790 .23768 .26404 .29516 .31657 75 .12167 .13901 .15442 .17268 .18528 

.20399 .23320 .25907 .28962 .31064 76 .12088 .13811 .15342 .17155 .18408 

.20030 .22898 .25438 .28438 .30502 77 .12011 .13723 .15244 .17045 .18290 

.19680 .22497 .24993 .27942 .29971 78 .11935 .13636 .15147 .16938 .18174 

.19348 .22117 .24571 .27471 .29466 79 .11860 .13551 .15052 .16832 .18060 

.19032 .21756 .24170 .27023 .28987 80 .11787 .13467 .14960 .16728 .17949 

.18732 .21412 .23788 .26596 .28530 81 .11716 .13385 .14868 .16626 .17840 

.18445 .21085 .23424 .26189 .28094 82 .11645 .13305 .14779 .16526 .17732 

.18171 .20771 .23076 .25801 .27677 83 .11576 .13226 .14691 .16428 .17627 

.17909 .20472 .22743 .25429 .27279 84 .11508 .13148 .14605 .16331 .17523 

.17659 .20185 .22425 .25073 .26897 85 .11442 .13072 .14520 .16236 .17421 

.17418 .19910 .22119 .24732 .26532 86 .11376 .12997 .14437 .16143 .17321 

.17188 .19646 .21826 .24404 .26180 87 .11311 .12923 .14355 .16051 .17223 

.16966 .19392 .21544 .24089 .25843 88 .11248 .12850 .14274 .15961 .17126 

.16753 .19148 .21273 .23786 .25518 89 .11186 .12779 .14195 .15873 .17031 

.16547 .18913 .21012 .23494 .25205 90 .11125 .12709 .14117 .15786 .16938 

.16349 .18687 .20760 .23213 .24904 91 .11064 .12640 .14040 .15700 .16846 

.16158 .18468 .20517 .22941 .24613 92 .11005 .12572 .13965 .15616 .16755 

.15974 .18257 .20283 .22679 .24332 93 .10947 .12506 .13891 .15533 .16666 

.15796 .18053 .20056 .22426 .24060 94 .10889 .12440 .13818 .15451 .16579 

.15623 .17856 .19837 .22181 .23798 95 .10833 .12375 .13746 .15371 .16493 

.15457 .17665 .19625 .21944 .23544 96 .10777 .12312 .13675 .15291 .16408 

.15295 .17481 .19420 .21715 .23298 97 .10722 .12249 .13606 .15214 .16324 

.15139 .17302 .19221 .21493 .23059 98 .10668 .12187 .13537 .15137 .16242 

.14987 .17128 .19028 .21277 .22828 99 .10615 .12126 .13469 .15061 .16161 

.14840 .16959 .18841 .21068 .22604 100 .10563 .12067 .13403 .14987 .16081 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

31 
32 
33 
34 
35 

36 
37 
38 
39 
40 

41 
42 
43 
44 
45 

46 
47 
48 
49 
50 
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Table A-B 

Critical values of the Mann-Whitney-Wilcoxon 
U-test for c=.025 (upper line) and c=.005 (lower line) 

(after Owen, 1962, from Stange and Henning, 1966, 
with kind permission of Springer Verlag, Berlin) 

- 0 0 1 1 2 2 3 3 ' 51  5 6 6 7 8 

5 2 3 5 6 7 8 9 11 12 13 14 15 17 18 19 20 
0 1 1 2 3 4 5 6 7 7 8 9 10 11 12 13 

6 3 5 6 8 10 11 13 14 16 17 19 21 22 24 25 27 
1 2' 3 4 5 6 7 9 10 11 12 13 15 16 17 18 

7 5 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 
1 3 4 6 7 9 10 12 13 15 16 18 19 21 22 24 

8 6 8 10 13 15 17 19 22 24 26 29 31 34 36 38 41 
2 4 6 7 9 11 13 15 17 18 20 22 24 26 28 30 

9 7 10 12 15 17 20 23 26 28 31 34 37 39 42 45 48 
3 5 7 9 11 13 16 18 20 22 24 27 29 31 33 36 

10 8 11 14 17 20 23 26 29 33 36 39 42 45 48 52 55 
4 6 9 11 13 16 18 21 24 26 29 31 34 37 39 42 

11 9 13 16 19 23 26 30 33 37 40 44 47 51 55 58 62 
5 7 10 13 16 18 21 24 27 30 33 36 39 42 45 48 

12 11 14 18 22 26 29 33 37 41 45 49 53 57 61 65 69 
6 9 12 15 18 21 24 27 31 34 37 41 44 47 51 54 

13 12 16 20 24 28 33 37 41 45 50 54 59 63 67 72 76 
7 10 13 17 20 24 27 31 34 38 42 45 49 53 57 60 

14 13 17 22 26 31 36 40 45 50 55 59 64 69 74 78 83 
7 11 15 18 22 26 30 34 38 42 46 50 54 58 63 67 

15 14 19 24 29 34 39 44 49 54 59 64 70 75 80 85 90 
8 12 16 20 24 29 33 37 42 46 51 55 60 64 69 73 

16 15 21 26 31 37 42 47 53 59 64 70 75 81 86 92 98 
9 13 18 22 27 31 36 41 45 50 55 60 65 70 74 79 

17 17 22 28 34 39 45 51 57 63 69 75 81 87 93 99 105 
10 15 19 24 29 34 39 44 49 54 60 65 70 75 81 86 

18 18 24 30 36 42 48 55 61 67 74 80 86 93 99 106 112 
11 16 21 26 31 37 42 47 53 58 64 70 75 81 87 92 

19 19 25 32 38 45 52 58 65 72 78 85 92 99 106 113 119 
12 17 22 28 33 39 45 51 57 63 69 74 81 87 93 99 

20 20 27 34 41 48 55 62 69 76 83 90 98 105 112 119 127 
13 18 24 30 36 42 48 54 60 67 73 79 86 92 99 105 
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Table A-9 

Acceptance intervals r 1 ,r for the Run test r 
if only one limit exists, for the other 

a blank is left (n 1  < n 2, n 2 	201 
(after Swed and Eisenhart, 1943, from Diem; 
1962, with kind permission of J.R. Geigy, 
Basel, and Institute of Mathematical Statistics, 
Hayward, CA, USA) 

ot  
.05 .01 

ni = 2 

12-20 2- 

n 1 	= 3 

6-11 2- 
12-14 2- 

 E2- 15-20  

n 1  = 4 

5,6 2-9 
7 2- 

8-14  2- 
15 3- 3- 

16-20 4- 3- 

n 1 	= 5 

5 2-10 
6 3-10 2- 
7 3-11 2-11 
8 3-11 2- 
9 3- 2- 
10 3- 3- 

11-17 4- 3- 
18-20 5- 4- 

n 1  = 6 

6 3-11 2-12 
7 3-12 2-13 
8 3-12 3-13 

9-12 4-13 3- 
13 5- 3.- 

14-18 5- 4- 
19, 20 6- 4- 

::~n 
a 

.05 .01 

n1=7 

7 3-13 3-13 
8 4-13 3-14 
9 4-14 3-15 

10 5-14 3-15 
11 5-14 4-15 
12 5-14 4- 

13, 14 5-15 4- 
15 6-15 4- 

16-20 6- 5- 

n 1  = 8 

8 4-14 3-15 
9 5-14 3-15 

10,11 5-15 4-16 
12 6-16 4-17 

13,14 6-16 5-17 
15 6-16 5- 
16 6-17 5- 
17 7-17 5- 

18-20 7-17 6- 

n 1 	= 9 

9 5-15 4-16 
10 5-16 4-17 
11 6-16 5-17 
12 6-16 5-18 
13 6-17 5-18 
14 7-17 5-18 

15-17 7-18 6-19 
18,19 8-18 6- 

20 8-18 7- 

n j  = 10 

10 6-16 5-17 
11 6-17 5-18 
12 7-17 5-19 
13 7-18 5-19 
14 7-18 6-19 
15 7-18 6-20 
16 8-19 6-20 
17 8-19 7-20 
18 8-19 7-21 
19 8-20 7-21 
20 9-20 7-21 
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Table A-9 (continued) 

.05 .01 

n i 	= 11 

11 7-17 5-19 
12 7-18 6-19 
13 7-19 6-20 
14 8-19 6-20 
15 8-19 7-21 
16 8-20 7-21 

17,18 9-20 7-22 
19,20 9-21 8-22 

= 12 

12 7-19 6-20 
13 8-19 6-21 
14 8-20 7-21 
15 8-20 7-22 
16 9-21 7-22 
17 9-21 8-22 
18 9-21 8-23 

19,20 10-22 8-23 

= 13 

13 8-20 7-21 
14 9-20 7-22 
15 9-21 7-22 
16 9-21 8-23 
17 10-22 8-23 
18 10-22 8-24 

19,20 10-23 9-24 

= 14 

14 9-21 7-23 
15 9-22 8-23 
16 10-22 8-24 
17 10-23 8-24 
18 10-23 9-25 
19 11-23 9-25 
20 11-24 9-25 

.05 .01 

= 15 

15 10-22 8-24 
16 10-23 9-24 
17 11-23 9-25 
18 11-24 9-25 
19 11-24 10-26 
20 12-25 10-26 

n 1  = 16 

16 11-23 9-25 
17 11-24 9-26 
18 11-25 10-26 

19,20 12-25 10-27 

n 1 	= 17 

17 11-25 10-26 
18 12-25 10-27 
19 12-26 10-27 
20 13-26 11-28 

n1 	= 18 

18 12-26 11-27 
19 13-26 11-28 
20 13-27 11-29 

= 19 

19 13-27 11-29 
20 13-27 12-29 

= 20 

20 14-28 12-30 
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Table A-ID 

Critical values of Wilcoxon's pair difference test 
(after Wilcoxon and Wilcox, 1964, from Stange and Henning, 1966, 

with kind permission of Springer-Verlag, Berlin) 

.05 .025 .01 .005 

6 2 1 - - 

7 4 2 0 - 

8 6 4 2 0 

9 8 - 	 6 3 2 

10 11 8 5 3 

11 14 11 7 5 

12 17 14 10 7 

13 21 17 13 10 

14 26 21 16 13 

15 30 25 20 16 

16 36 30 24 19 

17 41 35 28 23 

18 47 40 33 28 

19 54 46 38 32 

20 60 52 43 37 

21 68 59 49 43 

22 75 66 56 49 

23 83 73 62 55 

24 92 81 69 61 

25 101 90 77 68 

30 152 137 120 109 

35 214 195 174 160 
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Table A-Il 

Critical values of the test X = X - 
R 

(from Lord, 1947, with kind permission of Biometrika Trustees, 	London) 

.05 .025 :oi .005 

2 3.196 6.353 15.910 31.828 

3 .885 1.304 2.111 3.008 

4 .529 .717 1.023 1.316 

5 .388 .507 .685 .843 

6 .312 .399 .523 .628 

7 .263 .333 .429 .507 

8 .230 .288 .366 .429 

9 .205 .255 .322 .374 

10 .186 .230 .288 .333 

11 .170 .210 .262 .302 
12 .158 .194 .241 .277 

13 .147 .181 .224 .256 
14 .138 .170 .209 .239 
15 .131 .160 .197 .224 
16 .124 .151 .186 .212 
17 .118 .144 .177 .201 
18 .113 .137 .168 .191 
19 .108 .131 .161 .182 
20 .104 .126 .154 .175 
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Table A-12 

Critical values of the studentized range Q v.k  
(from Harter, 1960, with kind permission of the Institute of Mathematical Statistics, Hayward, CA, USA) 

2 	 3 	 4 	 5 	 6 	 7 	 8 

1 17.97 26.98 32.82 37.08 40.41 43.12 45.50 47.36 49.07 
2 6.085 8.331 9.798 10.88 11.74 12.44 13.03 13.54 13.99 
3 4.501 5.910 6.825 7.502 8.037 8.478 8.853 9.177 9.462 
4 3.927 5.040 5.757 6.287 6.707 7.053 7.347 7.602 7.826 
5 3.635 4.602 5.218 5.637 6.033 6.330 6.582 6.802 6.995 

6 3.461 4.339 4.896 5.305 5.628 5.895 6.122 6.319 6.439 
7 3.344 4.165 4.681 5.060 5.359 5.606 5.815 5.998 6.158 
8 3.261 4.041 4.529 4.886 5.167 5.399 5.597 5.767 5.918 
9 3.199 3.949 4.415 4.756 5.024 5.244 5.432 5.595 5.739 

10 3.151 3.877 4.327 4.654 4.912 5.124 5.305 5.461 5.599 

11 3.113 3.820 4.256 4.574 4.823 5.028 5.202 5.353 5.487 
12 3.082 3.773 4.199 4.508 4.751 4.950 5.119 5.265 5.395 
13 3.055 3.735 4.151 4.453 4.690 4.885 5.049 5.192 5.318 
14 3.033 3.702 4.111 4.407 4.639 4.829 4.990 5.131 5.254 
15 3.014 3.674 4.076 4.367 4.595 4.782 4.940 5.077 5.198 

16 2.998 3.649 4.046 4.333 4.557 4.741 4.897 5.031 5.150 
17 2.984 3.628 4.020 4.303 4.524 4.705 4.858 4.991 5.108 
18 2.971 3.609 3.997 4.277 4.495 4.673 4.824 4.956 5.071 
19 2.960 3.593 3.977 4.253 4.469 4.645 4.794 4.924 5.038 
20 2.950 3.578 3.958 4.232 4.445 4.620 4.768 4.896 5.008 

24 2.919 3.532 3.901 4.166 4.373 4.541 4.684 4.807 4.915 
30 2.888 3.486 3.845 4.102 4.302 4.464 4.602 4.702 4.824 
40 2.858 3.442 3.791 4.039 4.232 4.389 4.521 4.635 4.735 
60 2.829 3.399 3.737 3.977 4.163 4.314 4.441 4.550 4.646 

120 2.800 3.356 3.685 3.917 4.096 4.241 4.363 4.468 4.560 
2.772 3,314 3.633 3.858 4.030 4.170 4.286 4.387 4.474 

2 3 4 5 6 7 8 

1 90.03 135.0 164.3 185.6 202.2 215.8 227.2 237.0 245.6 
2 14.04 19.02 22.29 24.72 26.63 28.20 29.53 30.68 31.69 
3 8.261 10.62 12.17 13.33 14.24 15.00 15.64 16.20 16.69 
4 6.512 8.120 9.173 9.958 10.58 11.10 11.55 11.93 12.27 
5 5.702 6.976 7.804 8.421 8.913 9.321 9.669 9.972 10.24 

6 5.243 6.331 7.033 7.556 7.973 8.318 8.613 8.869 9.097 
7 4.949 5.919 6.543 7.005 7.373 7.679 7.939 8.166 8.368 
8 4.746 5.635 6.204 6.625 6.960 7.237 7.474 7.681 7.863 
9 4.596 5.428 5.957 6.348 6.658 6.915 7.134 7.325 7.495 

10 4.482 5.270 5.769 6.136 6.428 6.669 6.875 7.055 7.213 

11 4.392 5.146 5.621 5.970 6.247 6.476 6.672 6.842 6.992 
12 4.320 5.046 5.502 5.836 6.101 6.321 6.507 6.670 6.814 
13 4.260 4.964 5.404 5.727 5.981 6.192 6.372 6.528 6.667 
14 4.210 4.895 5.322 5.634 5.881 6.085 6.258 6.409 6.543 
15 4.168 4.836 5.252 5.556 5.796 5.994 6.162 6.309 6.439 

16 4.131 4.786 5.192 5.489 5.722 5.915 6.079 6.222 6.349 
17 4.099 4.742 5.140 5.430 5.659 5.847 6.007 6.147 6.270 
18 4.071 4.703 5.094 5.379 5.603 5.788 5.944 6.081 6.201 
19 4.046 4.670 5.054 5.334 5.554 5.735 5.889 6.022 6.141 
20 4.024 4.639 5.018 5.294 5.510 5.688 5.839 5.970 6.087 

24 3.956 4.546 4.907 5.168 5.374 5.542 5.685 5.809 5.919 
30 3.889 4.455 4.799 5.048 5.242 5.401 5.536 5.653 5.756 
40 3.825 4.367 4.696 4.931 5.114 5.265 5.392 5.502 5.599 
60 3.762 4.282 4.595 4.818 4.991 5.133 5.253 5.356 5.447 

120 3.702 4.200 4.497 4.709 4.872 5.005 5.118 5.214 5.299 
3.643 4.120 4.403 4.603 4.757 4.882 4.987 5.078 5.157 
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Table A-12 (conttnued) 	 a = .05 

11 12 13 14 15 16 17 18 19 

1 50.59 51.96 53.20 54.33 55.36 56.32 57.22 58.04 58.83 
2 14.39 14.75 15.08 15.38 15.65 15.91 16.14 16.37 16.57 
3 9.717 9.946 10.15 10.35 10.53 10.69 10.84 10.98 11.11 
4 8.027 8.208 8.373 8.525 8.664 8.794 8.914 9.028 9.134 
5 7.168 7.324 7.466 7.596 7.717 7.828 7.932 8.030 8.122 

6 6.649 6.789 6.917 7.034 7.143 7.244 7.338 7.426 7.508 
7 6.302 6.431 6.550 6.658 6.759 6.852 6.939 7.020 7.097 
8 6.054 6.175 6.287 6.389 6.483 6.571 6.653 6.729 6.802 
9 5.867 5.983 6.089 6.186 6.276 6.359 6.437 6.510 6.579 

10 5.722 5.833 5.935 6.028 6.114 6.194 6.269 6.339 6.405 

11 5.605 5.713 5.811 5.901 5.984 6.062 6.134 6.202 6.265 
12 5.511 5.615 5.710 5.798 5.878 5.953 6.023 6.089 6.151 
13 5.431 5.533 5.625 5.711 5.789 5.862 5.931 5.995 6.055 
14 5.364 5.463 5.554 5.637 5.714 5.786 5.852 5.915 5.974 
15 5.306 5.404 5.493 5.574 5.649 5.720 5.785 5.846 5.904 

16 5.256 5.352 5.439 5.520 5.593 5.662 5.727 5.786 5.843 
17 5.212 5.307 5.392 5.471 5.544 5.612 5.675 5.734 5.790 
18 5.174 5.267 5.352 5.429 5.501 5.568 5.630 5.688 5.743 
19 5.140 5.231 5.315 5.391 5.462 5.528 5.589 5.647 5.701 
20 5.108 5.199 5.282 5.357 5.427 5.493 5.553 5.610 5.663 

24 5.012 5.099 5.179 5.251 5.319 5.381 5.439 5.494 5.545 
30 4.917 5.001 5.077 5.147 5.211 5.271 5.327 5.379 5.429 
40 4.824 4.904 4.977 5.044 5.106 5.163 5.216 5.266 5.313 
60 4.732 4.808 4.878 4.942 5.001 5.056 5.107 5.154 5.199 

120 4.641 4.714 4.781 4.842 4.898 4.950 4.998 5.044 5.086 
4.552 4.622 4.685 4.743 4.796 4.845 4.891 4.934 4.974 

a = 	.01 

XK 11 12 13 14 15 16 17 18 19 

1 253.2 260.0 266.2 271.8 277.0 281.8 286.3 290.4 294.3 
2 32.59 33.40 34.13 34.81 35.43 36.00 36.53 37.03 37.50 
3 17.13 17.53 17.89 18.22 18.52 18.81 19.07 19.32 19.55 
4 12.57 12.84 13.09 13.32 13.53 13.73 13.91 14.08 14.24 
5 10.48 10.70 10.89 11.08 11.24 11.40 11.55 11.68 11.81 

6 9.301 9.485 9.653 9.808 9.951 10.08 10.21 10.32 10.43 
7 8.548 8.711 8.860 8.997 9.124 9.242 9.353 9.456 9.554 
8 8.027 8.176 8.312 8.436 8.552 8.659 8.760 8.854 8.943 
9 7.647 7.784 7.910 8.025 8.132 8.232 8.325 8.412 8.495 

10 7.356 7.485 7.603 7.712 7.812 7.906 7.993 8.076 8.153 

11 7.128 7.250 7.362 7.465 7.560 7.649 7.732 7.809 7.883 
12 6.943 7.060 7.167 7.265 7.356 7.441 7.520 7.594 7.665 
13 6.791 6.903 7.006 7.101 7.188 7.269 7.345 7.417 7.485 
14 6.664 6.772 6.871 6.962 7.047 7.126 7.199 7.268 7.333 
15 6.555 6.660 6.757 6.845 6.927 7.003 7.074 7.142 7.204 

16 6.462 6.564 6.658 6.744 6.823 6.898 6.967 7.032 7.093 
17 6.381 6.480 6.572 6.656 6.734 6.806 6.873 6.937 6.997 
18 6.310 6.407 6.497 6.579 6.655 6.725 6.792 6.854 6.912 
19 6.247 6.342 6.430 6.510 6.585 6.654 6.719 6.780 6.837 
20 6.191 6.285 6.371 6.450 6.523 6.591 6.654 6.714 6.771 

24 6.017 6.106 6.186 6.261 6.330 6.394 6.453 6.510 6.563 
30 5.849 5.932 6.008 6.078 6.143 6.203 6.259 6.311 6.361 
40 5.686 5.764 5.835 5.900 5.961 6.017 6.069 6.119 6.165 
60 5.528 5.601 5.667 5.728 5.785 5.837 5.886 5.931 5.974 

120 5.375 5.443 5.505 5.562 5.614 5.662 5.708 5.750 5.790 
5.227 5.290 5.348 5.400 5.448 5.493 5.535 5.574 5.611 
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Table A-12 	(continued) 

20 	22 
V\ 

24 26 28 30 32 34 

a = 	.05 

36 

1 59.56 60.91 62.12 63.22 64.23 65.15 66.01 66.81 67.56 
2 16.77 17.13 17.45 17.75 18.02 18.27 18.50 18.72 18.92 
3 11.24 11.47 11.68 11.87 12.05 12.21 12.36 12.50 12.63 
4 9.233 9.418 9.548 9.736 9.875 10.00 10.12 12.23 10.34 
5 8.208 8.368 8.512 8.643 8.764 8.875 8.979 9.075 9.165 

6 7.587 7.730 7.861 7.979 8.088 8.189 8.283 8.370 8.452 
7 7.170 7.303 7.423 7.53-3 7.634 7.728 7.814 7.895 7.972 
8 6.870 6.995 7.109 7.212 7.307 7.395 7.477 7.554 7.625 
9 6.644 6.763 6.871 6.970 7.061 7.145 7.222 7.295 7.363 

10 6.467 6.582 6.686 6.781 6.868 6.948 7.023 7.093 7.159 

11 6.326 6.436 6.536 6.628 6.712 6.790 6.863 6.930 6.994 
12 6.209 6.317 6.414 6.503 6.585 6.660 6.731 6.796 6.858 
13 6.112 6.217 6.312 6.398 6.478 6.551 6.620 6.684 6.744 
14 6.029 6.132 6.224 6.309 6.387 6.459 6.526 6.588 6.647 
15 5.958 6.059 6.149 6.233 6.309 6.379 6.445 6.506 6.564 

16 5.897 5.995 6.084 6.166 6.241 6.310 6.374 6.434 6.491 
17 5.842 5.940 6.027 6.107 6.181 6.249 6.313 6.372 6.427 
18 5.794 5.890 5.977 6.055 6.128 6.195 6.258 6.316 6.371 
19 5.752 5.846 5.932 6.009 6.081 6.147 6.209 6.267 6.321 
20 5.714 5.807 5.891 5.968 6.039 6.104 6.165 6.222 6.275 

24 5.594 5.683 5.764 5.838 5.906 5.968 6.027 6.081 6.132 
30 5.475 5.561 5.638 5.709 5.774 5.833 5.889 5.941 5.990 
40 5.358 5.439 5.513 5.581 5.642 5.700 5.753 5.803 5.849 
60 5.241 5.319 5.389 5.453 5.512 5.566 5.617 5.664 5.708 

120 5.126 5.200 5.266 5.327 5.382 5.434 5.481 5.526 5.568 
5.012 5.081 5.144 5.201 5.253 5.301 5.346 5.388 5.427 

ct= 	.01 

20 22 24 26 28 30 32 34 36 

1 298.0 304.7 310.8 316.3 321.3 326.0 330.3 334.3 338.0 
2 37.95 38.76 39.49 40.15 40.76 41.32 41.84 42.33 42.78 
3 19.77 20.17 20.53 20.86 21.16 21.44 21.70 21.95 22.17 
4 14.40 14.68 14.93 15.16 15.37 15.57 15.75 15.92 16.08 
5 11.93 12.16 12.36 12.54 12.71 12.87 13.02 13.15 13.28 

6 10.54 10.73 10.91 11.06 11.21 11.34 11.47 11.58 11.69 
7 9.646 9.815 9.970 10.11 10.24 10.36 10.47 10.58 10.67 
8 9.027 9.182 8.322 9.450 9.569 9.678 9.779 9.874 9.964 
9 8.573 8.717 8.847 8.966 9.075 9.177 9.271 9.360 9.443 

10 8.226 8.361 8.483 8.595 8.698 8.794 8.883 8.966 9.044 

11 7.952 8.080 8.196 8.303 8.400 8.491 8.575 8.654 8.728 
12 7.731 7.853 7.964 8.066 8.159 8.246 8.327 8.402 8.473 
13 7.548 7.665 7.772 7.870 7.960 8.043 8.121 8.193 8.262 

14 7.395 7.508 7.611 7.705 7.792 7.873 7.948 8.018 8.084 

15 7.264 7.374 7.474 7.566 7.650 7.728 7.800 7.869 7.932 

16 7.152 7.258 7.356 7.455 7.527 7.602 7.673 7.739 7.802 

17 7.053 7.158 7.253 7.340 7.420 7.493 7.563 7.627 7.687 

18 6.968 7.070 7.163 7.247 7.325 7.398 7.465 7.528 7.587 

19 6.891 6.992 7.082 7.166 7.242 7.313 7.379 7.440 7.498 

20 6.823 6.922 7.011 7.092 7.168 7.237 7.302 7.362 7.419 

24 6.612 6.705 6.789 6.865 6.936 7.001 7.062 7.119 7.173 

30 6.407 6.494 6.572 6.644 6.710 6.772 6.828 6.881 6.932 

40 6.209 6.289 6.362 6.429 6.490 6.547 6.600 6.650 6.697 
60 6.015 6.090 6.158 6.220 6.227 6.330 6.378 6.424 6.467 

120 5.827 5.897 5.959 6.016 6.069 6.117 6.162 6.204 6.244 

5.645 5.709 5.766 5.818 5.866 5.911 5.952 5.990 6.026 
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Table A-12 	(continued) a = 	.05 

K 
38 40 50 60 70 80 90 100 \  

1 68.26 68.92 71.73 73.97 75.82 77.40 78.77 79.98 
2 19.11 19.28 20.05 20.66 21.16 21.59 21.96 22.29 
3 12.75 12.87 13.36 13.76 14.08 14.36 14.61 14.82 
4 10.44 10.53 10.93 11.24 11.51 11.73 11.92 12.09 
5 9.250 9.330 9.674 9.949 10.18 10.38 10.54 10.69 

6 8.529 8.601 8.913 9.163 9.370 9.548 9.702 9.839 
7 8.043 8.110 8.400 8.632 8.824 8.989 9.133 9.261 
8 7.693 7.756 8.029 8.248 8.430 8.586 8.722 8.843 
9 7.428 7.488 7.749 7.958 8.132 8.281 8.410 8.526 

10 7.220 7.279 7.529 7.730 7.897 8.041 8.166 8.276 

11 7.053 7.110 7.352 7.546 7.708 7.847 7.968 8.075 
12 6.916 6.970 7.205 7.394 7.552 7.687 7.804 7.909 
13 6.800 6.854 7.083 7.267 7.421 7.552 7.667 7.769 
14 6.702 6.754 6.979 7.159 7.309 7.438 7.550 7.650 
15 6.618 6.669 6.888 7.065 7.212 7.339 7.449 7.546 

16 6.544 6.594 6.810 6.984 7.128 7.252 7.360 7.457 
17 6.479 6.529 6.741 6.912 7.054 7.176 7.283 7.377 
18 6.422 6.471 6.680 6.848 6.989 7.109 7.213 7.307 
19 6.371 6.419 6.626 6.792 6.930 7.048 7.152 7.244 
20 6.325 6.373 6.576 6.740 6.877 6.994 7.097 7.187 

24 6.181 6.226 6.421 6.579 6.710 6.822 6.920 7.008 
30 6.037 6.080 6.267 6.417 6.543 6.650 6.744 6.827 
40 5.893 5.934 6.112 6.255 6.375 6.477 6.566 6.645 
60 5.750 5.789 5.958 6.093 6.206 6.303 6.387 6.462 

120 5.607 5.644 5.802 5.929 6.035 6.126 6.205 6.275 
5.463 5.498 5.646 5.764 5.863 5.947 6.020 6.085 

01 	.01 

38 40 50 60 70 80 90 100 

1 341.5 344.8 358.9 370.1 379.4 387.3 394.1 400.1 
2 43.21 43.61 45.33 46.70 47.83 48.80 49.64 50.38 
3 22.39 22.59 23.45 24.13 24.71 25.19 25.62 25.99 
4 16.23 16.37 16.98 17.46 17.86 18.20 18.50 18.77 
5 13.40 13.52 14.00 14.39 14.72 14.99 15.23 15.45 

6 11.80 11.90 12.31 12.65 12.92 13.16 13.37 13.55 
7 10.77 10.85 11.23 11.52 11.77 11.99 12.17 12.34 
8 10.05 10.13 10.47 10.75 10.97 11.17 11.34 11.49 
9 9.521 9.594 9.912 10.17 10.38 10.57 10.73 10.87 

10 9.117 9.187 9.486 9.726 9.927 10.10 10.25 10.39 

11 8.798 8.864 9.148 9.377 9.568 9.732 9.875 10.00 
12 8.539 8.603 8.875 9.094 9.277 9.434 9.571 9.693 
13 8.326 8.387 8.648 8.859 9.035 9.187 9.318 9.436 
14 8.146 8.204 8.457 8.661 8.832 8.978 9.106 9.219 
15 7.992 8.049 8.295 8.492 8.658 8.800 8.924 9.035 

16 7.860 7.916 8.154 8.347 8.507 8.646 8.767 8.874 
17 7.745 7.799 8.031 8.219 8.377 8.511 8.630 8.735 
18 7.643 7.696 7.924 8.107 8.261 8.393 8.508 8.611 
19 7.553 7.605 7.828 8.008 8.159 8.288 8.401 8.502 
20 4.473 7.523 7.742 7.919 8.067 8,194 8.305 8.404 

24 7.223 7.270 7.476 7,642 7.780 7.900 8.004 8.097 
30 6.978 7.023 7.215 7.370 7.500 7.611 7.709 7.796 
40 6.740 6.782 6.960 7.104 7.225 7.328 7.419 7.500 
60 6.507 6.546 6.710 6.843 6.954 7.050 7.133 7.207 

120 6.281 6.316 6.467 6.588 6.689 6.776 6.852 6.919 
6.060 6.092 6.228 6.338 6.429 6.507 6.575 6.636 
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Table A-13 

Critical values of Fmax  for a = . 05 (upper line) and a = . 01 (lower line) 
(from David, 1952, with kind permission of Biometrika Trustees, London) 

2 	3 	4 	5 	6 	7 	8 	9 	10 	11 	12 

39.0 87.5 142. 202. 266. 333. 403. 475. 550. 626. 704. 
2 199. 448. 729. 1036 1362 1705 2063 2432 2813 3204 3605 

15.4 27.8 39.2 50.7 62.0 72.9 83.5 93.9 104. 114. 124. 
47.5 85. 120. 151. 184. 21(6) 24(9) 28(1) 31(0) 33(7) 36(1) 

9.60 15.5 20.6 25.2 29.5 33.6 37.5 41.1 44.6 48.0 51.4 
23.2 37. 49. 59. 69., 79. 89. 97. 106. 113. 120. 

7.15 10.8 13.7 16.3 18.7 20.8 22.9 24.7 26.5 28.2 29.9 
14.9 22. 28. 33. 38. 42. 46. 50. 54. 57. 60. 

5.82 8.38 10.4 12.1 13.7 15.0 16.3 17.5 18.6 19.7 20.7 
6 11.1 15.5 19.1 22. 25. 27. 30. 32. 34. 36. 37. 

4.99 6.94 8.44 9.70 10.8 11.8 12.7 13.5 14.3 15.1 15.8 
7 8.89 12.1 14.5 16.5 18.4 20. 22. 23. 24. 26. 27. 

4.43 6.00 7.18 8.12 9.03 9.78 10.5 11.1 11.7 12.2 12.7 
8 7.50 9.9 11.7 13.2 14.5 15.8 16.9 17.9 18.9 19.8 21. 

4.03 5.34 6.31 7.11 7.80 8.41 8.95 9.45 9.91 10.3 10.7 
6.54 8.5 9.9 11.1 12.1 13.1 13.9 14.7 15.3 16.0 16.6 

3.72 4.85 5.67 6.34 6.92 7.42 7.87 8.28 8.66 9.01 9.34 
10 5.85 7.4 8.6 9.6 10.4 11.1 11.8 12.4 12.9 13.4 13.9 

3.28 4.16 4.79 5.30 5.72 6.09 6.42 6.72 7.00 7.25 7.48 
12 4.91 6.1 6.9 7.6 8.2 8.7 9.1 9.5 9.9 10.2 10.6 

2.86 3.54 4.01 4.37 4.68 4.95 5.19 5.40 5.59 5.77 5.93 
15 4.07 4.9 5.5 6.0 6.4 6.7 7.1 7.3 7.5 7.8 8.0 

2.46 2.95 3.29 3.54 3.76 3.94 4.10 4.24 4.37 4.49 4.59 
20 3.32 3.8 4.3 4.6 4.9 5.1 5.3 5.5 5.6 5.8 5.9 

2.07 2.40 2.61 2.78 2.91 3.02 3.12 3.21 3.29 3.36 3.39 
30 2.63 3.0 3.3 3.4 3.6 3.7 3.8 3.9 4.0 .4.1 4.2 

1.67 1.85 1.96 2.04 2.11 2.17 2.22 2.26 2.30 2.33 2.36 
60 1.96 2.2 2.3 2.4 2.4 2.5 2.5 2.6 2.6 2.7 2.7 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
00  

1.00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
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Table -14 

Critical values of Spearman's and Kendall's rank correlation coefficients 
(from Stange and Henning, 1968, with kind permission of Springer Verlag, Berlin) 

Spearman'sIr 5 ( 1 _) Kendall'sT(l)I 

.10 .05 .01 .10 .05 .01 

4 1 

5 .90 1 - .80 1 - 

6 .83 .89 1 .73 .87 1 

7 .71 .79 .93 .62 .71 .91 

8 .64 .74 .88 .57 .64 .79 

9 .60 .70 .83 .50 .56 .72 

10 .56 .66 .79 .47 .51 .64 

Table 4-15 

Critical values of Dixon's test for outliers r 
)after Dixon, 19 1 1, from Duno and Clark, 1974, 

with kind permission of Wiley and Sons, New York) 

.95 .99 .995 

3 .941 .988 .994 
4 .765 .889 .926 
5 .642 .780 .821 

6 .SoU .698 .740 
7 .507 .637 .680 
8 .468 .590 .634 
9 .437 .555 .598 

10 .412 .527 .568 

11 .392 .502 .542 
12 .376 .482 .522 
13 .361 .465 .503 
14 .349 .450 .488 
15 .338 .438 .475 

16 .329 .426 .463 
17 .320 .416 .452 
18 .313 .407 .442 
19 .306 .398 .433 
20 .300 .391 .425 

21 .295 .384 .418 
22 .290 .378 .411 
23 .285 .372 .404 
24 .281 .367 .399 
25 .277 .362 .393 

30 .260 .341 .372 
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Table A-IS 

Critical values of Grubbs' test for outliers T 
(from Grubbs, 1969, with kind permission of 

American Statistical Association, Washington, D.C.) 

.05 .025 .001 

3 1.15 1.15 1.15 
4 1.46 1.48 1.49 
5 1.67 1.71 1.75 

6 1.82 1.89 1.94 
7 1.94 2.02 2.10 
8 2.03 2.13 2.22 
9 2.11 2.21 2.32 

10 2.18 2.29 2.41 

11 2.23 2.36 2.48 
12 2.29 2.41 2.55 
13 2.33 2.46 2.61 
14 2.37 2.51 2.66 
15 2.41 2.55 2.71 

16 2.44 2.59 2.75 
17 2.47 2.62 2.79 
18 2.50 2.65 2.82 
19 2.53 2.68 2.85 
20 2.56 2.71 2.88 

21 2.58 2.73 2.91 
22 2.60 2.76 2.94 
23 2.62 2.78 2.96 
24 2.64 2.80 2.99 
25 2.66 2.82 3.01 

30 2.75 2.91 
50 2.96 3.13 

100 3.21 3.38 
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Table A-17 

Critical values of Z = 	 for outliers 
(after David et al., 1954) 

.95 i .99 .995 

Z ( c ) 	- 	Z (1 c )  Z ( c ) 	- 	Z (1 a )  Z ( a )  Z (1 c )  

20 3.18 - 	 4.49 3.01 - 	 4.79 2.95 - 	 4.91 

30 3.46 - 	 4.89 3.27 - 	 5.25 3.22 - 	 5.39 

40 3.66 - 	 5.15 3.46 - 	 5.54 3.41 - 	 5.69 

50 3.82 - 	 5.35 3.61 - 	 5.77 3.57 - 	 5.91 

60 3.95 - 	 5.50 3.74 - 	 5.93 3.69 - 	 6.09 

80 4.15 - 	 5.73 3.93 - 	 6.18 3.88 - 	 6.35 

100 4.31 - 	 5.90 4.09 - 	 6.36 4.02 - 	 6.54 

150 4.59 - 	 6.18 4.36 - 	 6.64 4.30 - 	 6.84 

200 4.78 - 	 6.38 4.56 - 	 6.85 4.50 - 	 7.03 

500 5.37 - 	 6.94 5.13 - 	 7.42 5.06 - 	 7.60 

1000 5.79 - 	 7.33 5.57 - 	 7.80 5.50 - 	 7.99 
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Table A-18 

Critical values of the mean successive difference test q n  
and of the serial correlation coefficient Rh,n  (underlined values are negative) 

(from Diem, 1982, with kind permission of J.R. Geigy, Basel) 

n 

2 	- 

11n(a) 
2 
n(1ct) R 	_D 

h.n(c) 	h.n(1-a) 

ct = 	.05 a = 	.01 a = 	.05 a = .01 

4 .780 - 3.220 .626 - 3.374 
5 .820 - 3.180 .538 - 3.462 .735 - 	 .253 .798 - 	 .297 
6 .890 - 3.110 .561 - 3.439 .708 - 	 .345 .863 - 	 .447 
7 .936 - 3.064 .614 - 3.386 .674 - 	 .370 .799 - 	 .510 
8 .982 - 3.018 .663 - 3.337 .625 - 	 .371 .764 - 	 .531 
9 1.024 - 2.976 .709 - 3.291 .593 - 	 .366 .737 - 	 .533 

10 1.062 - 2.938 .752 - 3.248 .564 - 	 .360 .705 - 	 .525 

11 1.096 - 2.904 .791 - 3.209 .539 - 	 .353 .679 - 	 .515 
12 1.128 2.872 .828 - 3.172 .516 - 	 .348 .655 - 	 .505 
13 1.156 - 2.844 .862 - 3.138 .497 - 	 .341 .634 - 	 .495 
14 1.182- 2.818 .893 - 3.107 .479 - 	 .335 .615 - 	 .485 
15 1.205 - 2.795 .922 - 3.078 .462 - 	 .328 .597 - 	 .475 

16 1.227 - 2.773 .949 - 3.051 .447 - 	 .322 .580 - 	 .465 
17 1.247 - 2.753 .974 - 3.026 .434 - 	 .316 .564 - 	 .456 
18 1.266 - 2.734 .998 - 3.002 .421 - 	 .310 .550 - 	 .448 
19 1.283 - 2.717 1.020 - 2.980 .410 - 	 .304 .536 - 	 .440 
20 1.300 - 2.700 1.041 - 2.959 .399 - 	 .299 .524 - 	 .432 

21 1.315 - 2.685 1.060 - 2.940 .389 - 	 .294 .512 - 	 .424 
22 1.329 - 2.671 1.078 - 2.922 .380 - 	 .289 .502 - 	 .417 
23 1.342 - 2.658 1.096 - 2.904 .372 - 	 .285 .491 - 	 .411 
24 1.355 - 2.645 1.112 2.888 .364 - 	 .280 .482 - 	 .404 
25 1.367 - 2.633 1.128 - 2.872 .356 - 	 .276 .473 - 	 .398 

30 1.418 - 2.582 1.195 - 2.805 .325 - 	 .257 .433 - 	 .370 
35 1.458 - 2.542 1.248 - 2.752 .300 - 	 .242 .402 - 	 .348 
40 1.492 - 2.508 1.293 - 2.707 .279 - 	 .229 .377 - 	 .330 
45 1.521 - 2.479 1.332 - 2.668 .262 - 	 .218 .356 - 	 .314 
50 1.544 - 2.456 1.363 - 2.637 .248 - 	 .208 .338 - 	 .300 

75 1.625 - 2.375 1.471 - 2.529 .199 - 	 .173 .276 - 	 .250 
100 1.674 - 2.326 1.539 - 2.461 .175 - 	 .154 .243 - 	 .222 
200 1.768 - 2.232 1.673 - 2.327 .121 - 	 .111 .170 - 	 .160 

1000 .053- .051 .075- .073 
00 2.000 - 2.000 2.000 - 2.000 
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Table A-19 

The probit transformation Y(xj) 
(from Finney, 1971, with kind permission of C. Griffin, High Wycombe and London) 

Cumulated 
frequencies 0.00 0.01 0.02 0.03 

F(x)  
0.04 0.05 0.06 0.07 0.08 0.09 

0.00 - 2.67 2.95 3.12 3.25 3.36 3.45 3.52 3.59 3.66 

0.10 3.72 3.77 3.82 3.87 3.92 3.96 4.01 4.05 4.08 4.12 

0.20 4.16 4.19 4.23 4.26 4.29 4.33 4.36 4.39 4.42 4.45 

0.30 4.48 4.50 4.53 4.56 4.59 4.61 4.64 4.67 4.69 4.72 

0.40 4.75 4.77 4.80 4.82 4.85 4.87 4.90 4.92 4.95 4.97 

0.50 5.00 5.03 5.05 5.08 5.10 5.13 5.15 5.18 5.20 5.23 

0.60 5.25 5.28 5.31 5.33 5.36 5.39 5.41 5.44 5.47 5.50 

0.70 5.52 5.55 5.58 5.61 5.64 5.67 5.71 5.74 5.77 5.81 

0.80 5.84 5.88 5.92 5.95 5.99 6.04 6.08 6.13 6.18 6.23 

0.90 6.28 6.34 6.41 6.48 6.55 6.64 6.75 6.88 7.05 7.33 

Cumulated 
frequencies 0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 

0.97 6.88 6.90 6.91 6.93 6.94 6.96 6.98 7.00 7.01 7.03 

0.98 7.05 7.07 7.10 7.12 7.14 7.17 7.20 7.23 7.26 7.29 

0.99 7.33 7.37 7.41 7.46 7.51 7.58 7.65 7.75 7.88 8.09 
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Table A-20 

Minimum and maximum working probits, range, and weighting coefficients 
(from Finney, 1971, with kind permission of C. Griffin, High Wycombe and London) 

Expected 
probit 
Y 	(xj) 

Minimum 
working 
probit 

Yo 

Range 
fri 

Maximum 
working 
probit 

vi 

Expected 
probit 
V 	(xj) 

Weighting 
coefficient 

w 

1.1 0.8579 5 034. 9.1421 8.9 .00082 
1.2 0.9522 3 425. 9.0478 8.8 .00118 
1.3 1.0462 2 354. 8.9538 8.7 .00167 
1.4 1.1400 1 634. 8.8600 8.6 .00235 
1.5 1.2334 1 146. 8.7666 8.5 .00327 

1.6 1.3266 811.5 8.6734 8.4 .00451 
1.7 1.4194 580.5 8.5806 8.3 .00614 
1.8 1.5118 419.4 8.4882 8.2 .00828 
1.9 1.6038 306.1 8.3962 8.1 .01104 
2.0 1.6954 225.6 8.3046 8.0 .01457 

2.1 1.7866 168.00 8.2134 7.9 .01903 
2.2 1.8772 126.34 8.1228 7.8 .02458 
2.3 1.9673 95.96 8.0327 7.7 .03143 
2.4 2.0568 73.62 7.9432 7.6 .03977 
2.5 2.1457 57.05 7.8543 7.5 .04979 

2.6 2.2339 44.654 7.7661 7.4 .06168 
2.7 2.3214 35.302 7.6786 7.3 .07564 
2.8 2.4081 28.189 7.5919 7.2 .09179 
2.9 2.4938 22.736 7.5062 7.1 .11026 
3.0 2.5786 18.522 7.4214 7.0 .13112 

3.1 2.6624 15.2402 7.3376 6.9 .15436 
3.2 2.7449 12.6662 7.2551 6.8 .17994 
3.3 2.8261 10.6327 7.1739 6.7 .20774 
3.4 2.9060 9.0154 7.0940 6.6 .23753 
3.5 2.9842 7.7210 7.0158 6.5 .26907 

3.6 3.0606 6.6788 6.9394 6.4 .30199 
3.7 3.1351 5.8354 6.8649 6.3 .33589 
3.8 3.2074 5.1497 6.7926 6.2 .37031 
3.9 3.2773 4.5903 6.7227 6.1 .40474 
4.0 3.3443 4.1327 6.6557 6.0 .43863 

4.1 3.4083 3.7582 6.5917 5.9 .47144 
4.2 3.4687 3.4519 6.5313 5.8 .50260 
4.3 3.5251 3.2025 6.4749 5.7 .53159 
4.4 3.5770 3.0010 6.4230 5.6 .55788 
4.5 3.6236 2.8404 6.3764 5.5 .58099 

4.6 3.6643 2.7154 6.3357 5.4 .60052 
4.7 3.6982 2.6220 6.3018 5.3 .61609 
4.8 3.7241 2.5573 6.2759 5.2 .62742 
4.9 3.7407 2.5192 6.2593 5.1 .63431 
5.0 3.7467 2.5066 6.2533 5.0 .63662 

5.1 3.7401 2.5192 6.2599 4.9 .63431 
5.2 3.7187 2.5573 6.2813 4.8 .62742 
5.3 3.6798 2.6220 6.3202 4.7 .61609 
5.4 3.6203 2.7154 6.3797 4.6 .60052 
5.5 3.5360 2.8404 6.4640 4.5 .58099 

5.6 3.4220 3.0010 6.5780 4.4 .55788 
5.7 3.2724 3.2025 6.7276 4.3 .53159 
5.8 3.0794 3.4519 6.9206 4.2 .50260 
5.9 2.8335 3.7582 7.1665 4.1 .47144 
6.0 2.5229 4.1327 7.4771 4.0 .43863 

6.1 2.1325 4.5903 7.8675 3.9 .40474 
6.2 1.6429 5.1497 8.3571 3.8 .37031 
6.3 1.0295 5.8354 8.9705 3.7 .33589 
6.4 0.2606 6.6788 9.7394 3.6 .30199 
6.5 -0.7051 7.7210 10.7051 3.5 .26907 
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Table A-21 

Critical values of Van der Waerden's X test 
(from Van der Waerden, 1971, with kind permission of Springer Verlag, Berlin) 

a 	.025 a = 	.01 a = .005 

I n 1 -n 2 = Ini-n21= ni-n2I= 
n n n 

0,1 2,3 4,5 0,1 2,3 4,5 0,1 2,3 4,5 

6 00 = 00 6 00 00 00 6 
7 00 00 00 7 00 oo CO 7 00 00 00 

8 2.40 2.30 00 8 00 00 00 8 
9 2.38 2.20 00 9 2.80 00 00 9 

10 2.60 2.49 2.30 10 3.00 2.90 2.80 10 3.20 3.10 00 

11 2.72 2.58 2.40 11 3.20 3.00 2.90 11 2.40 3.40 00 

12 2.86 2.79 2.68 12 3.29 3.30 3.20 12 3.60 3.58 3.40 
13 2.96 2.91 2.78 13 3.50 3.36 3.18 13 3.71 3.68 3.50 
14 3.11 3.06 3.00 14 3.62 3.55 3.46 14 3.94 3.88 3.76 
15 3.24 3.19 3.06 15 3.74 3.68 3.57 15 4.07 4.05 3.88 
16 3.39 3.36 3.28 16 3.92 3.90 3.80 16 4.26 4.25 4.12 
17 3.49 3.44 3.36 17 4.06 4.01 3.90 17 4.44 4.37 4.23 
18 3.63 3.60 3.53 18 4.23 4.21 4.14 18 4.60 4.58 4.50 
19 3.73 3.69 3.61 19 4.37 4.32 4.23 19 4.77 4.71 4.62 
20 3.86 3.84 3.78 20 4.52 4.50 4.44 20 4.94 4.92 4.85 
21 3.96 3.92 3.85 21 4.66 4.62 4.53 21 5.10 5.05 4.96 
22 4.08 4.06 4.01 22 4.80 4.78 4.72 22 5.26 5.24 5.17 
23 4.18 4.15 4.08 23 4.92 4.89 4.81 23 5.40 5.36 5.27 
24 4.29 4.27 4.23 24 5.06 5.04 4.99 24 5.55 5.53 5.48 
25 4.39 4.36 4.30 25 5.18 5.14 5.08 25 5.68 5.65 5.58 
26 4.50 4.48 4.44 26 5.30 5.29 5.24 26 5.83 5.81 5.76 
27 4.59 4.56 4.51 27 5.42 5.39 5.33 27 5.95 5.92 5.85 
28 4.69 4.68 4.64 28 5.54 5.52 5.48 28 6.09 6.07 6.03 
29 4.78 4.76 4.72 29 5.65 5.62 5.57 29 6.22 6.19 6.13 
30 4.88 4.87 4.84 30 5.77 5.75 5.72 30 6.35 6.34 6.30 
31 4.97 4.95 4.91 31 5.87 5.85 5.80 31 6.47 6.44 6.39 
32 5.07 5.06 5.03 32 5.99 5.97 5.94 32 6.60 6.58 6.55 
33 5.15 5.13 5.10 33 6.09 6.07 6.02 33 6.71 6.69 6.64 
34 5.25 5.24 5.21 34 6.20 6.19 6.16 34 6.84 6.82 6.79 
35 5.33 5.31 5.28 35 6.30 6.28 6.24 35 6.95 6.92 6.88 
36 5.42 5.41 5.38 36 6.40 6.39 6.37 36 7.06 7.05 7.02 
37 5.50 5.48 5.45 37 6.50 6.48 6.45 37 7.17 7.15 7.11 
38 5.59 5.58 5.55 38 6.60 6.59 6.57 38 7.28 7.27 7.25 
39 5.67 5.65 5.62 39 6.70 6.68 6.65 39 7.39 7.37 7.33 
40 5.75 5.74 5.72 40 6.80 6.79 6.77 40 7.50 7.49 7.47 
41 5.83 5.81 5.79 41 6.89 6.88 6.85 41 7.62 7.60 7.56 
42 5.91 5.90 5.88 42 6.99 6.98 6.96 42 7.72 7.71 7.69 
43 5.99 5.97 5.95 43 7.08 7.07 7.04 43 7.82 7.81 7.77 
44 6.06 6.06 6.04 44 7.17 7.17 7.14 44 7.93 7.92 7.90 
45 6.14 6.12 6.10 45 7.26 7.25 7.22 45 8.02 8.01 7.98 
46 6.21 6.21 6.19 46 7.35 7.35 7.32 46 8.13 8.12 8.10 
47 6.29 6.27 6.25 47 7.44 7.43 7.40 47 8.22 8.21 8.18 
48 6.36 6.35 6.34 48 7.53 7.52 7.50 48 8.32 8.31 8.29 
49 6.43 6.42 6.39 49 7.61 7.60 7.57 49 8.41 8.40 8.37 
50 6.50 6.50 6.48 50 7.70 7.69 7.68 50 8.51 8.50 8.48 
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Table A-22 

Critical lower values L ()  of the binomial distribution 
(from Diem, 1962, with kind permission of J.R. Geigy, Basel) 

n L( 01 ) L105j 
1 

n 	. L( 01 ) L( 05 ) 

6 - 0 41 11 13 

7 - 0 42 12 14 

8 0 0 43 12 14 

9 0 1 44 13 15 

10 0 1 45 13 15 

11 0 1 46 13 15 

12 1 2 47 14 16 

13 1 2 48 14 16 

14 1 2 49 15 17 

15 2 3 50 15 17 

16 2 3 51 15 18 

17 2 4 52 16 18 

18 3 4 53 16 18 

19 3 4 54 17 19 

20 3 5 55 17 19 

21 4 5 56 17 20 

22 4 5 57 18 20 

23 4 6 58 18 21 

24 5 6 59 19 21 

25 5 7 60 19 21 

26 6 7 61 20 22 

27 6 7 62 20 22 

28 6 8 63 20 23 

29 7 8 64 21 23 

30 7 9 65 21 24 

31 7 9 66 22 24 

32 8 9 67 22 25 

33 8 10 68 22 25 

34 9 10 69 23 25 

35 9 11 70 23 26 

36 9 11 80 28 30 

37 10 12 90 32 35 

38 10 12 100 36 39 

39 11 12 200 81 85 

40 11 13 500 220 227 
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Table A-23 

Coefficients ai for the W test for normality 
(from Shapiro and Wilk, 1965, with kind permissionof Biometrika Trustees. London) 

\fl 2 3 4 5 6 7 8 9 10 
1-'.. 

1 0.7071 0.7071 0.6872 0.6646 0.6431 0.6233 0.6052 0.5888 0.5739 
2 - .0000 .1677 .2413 .2806 .3031 .3164 .3244 .3291 
3 - - - .0000 .0875 .1401 .1743 .1976 .2141 
4 - - - - - .0000 .0561 .0947 .1224 
5 - - - - - - - .0000 .0399 

1' 
11 12 13 14 15 16 17 18 19 20 

1 0.5601 0.5475 0.5359 0.5251 0.5150 0.5056 0.4968 0.4886 0.4808 0.4734 
2 .3315 .3325 .3325 .3318 .3306 .3290 .3273 .3253 .3232 .3211 
3 .2260 .2347 .2412 .2460 .2495 .2521 .2540 .2553 .2561 .2565 
4 .1429 .1586 .1707 .1802 .1878 .1939 .1988 .2027 .2059 .2085 
5 .0695 .0922 .1099 .1240 • 1353 .1447 .1524 .1587 .1641 .1686 

6 0.0000 0.0303 0.0539 0.0727 0.0880 0.1005 0.1109 0.1197 0.1271 0.1334 
7 - - .0000 .0240 .0433 .0593 .0752 .0837 .0932 .1013 
8 - - - - .0000 .0196 .0359 .0496 .0612 .0711 
9 - - - - - - .0000 .0163 .0303 .0422 

10 - - - - - - - - .0000 .0140 

21 22 23 24 25 26 27 28 29 30 

1 0.4643 0.4590 0.4542 0.4493 0.4450 0.4407 0.4366 0.4328 0.4291 0.4254 
2 .3185 .3156 .3126 .3098 .3069 .3043 .3018 .2992 .2968 .2944 
3 .2578 .2571 .2563 .2554 .2543 .2533 .2522 .2510 .2499 .2487 
4 .2119 .2131 .2139 .2145 .2148 .2151 .2152 .2151 .2150 .2148 
5 .1736 .1764 .1787 .1807 .1822 .1836 .1848 .1857 .1864 .1870 

6 0.1399 0.1443 0.1480 0.1512 0.1539 0.1563 0.1584 0.1601 0.1616 0.1630 
7 .1092 .1150 .1201 .1245 .1283 .1316 .1346 .1372 .1395 .1415 
8 .0804 .0878 .0941 .0997 .1046 .1089 .1128 .1162 .1192 .1219 
9 .0530 .0618 .0696 .0764 .0823 .0876 .0923 .0965 .1002 .1036 

10 .0263 .0368 .0459 .0539 .0610 .0672 .0728 .0778 .0822 .0862 

11 0.0000 0.0122 0.0228 0.0321 0.0403 0.0476 0.0540 0.0598 0.0650 0.0697 
12 - - .0000 .0107 .0200 .0284 .0358 .0424 .0483 .0537 
13 - - - - .0000 .0094 .0178 .0253 .0320 .0381 
14 - - - - - - .0000 .0084 .0159 .0227 
15 - - - - - - - - .0000 .0076 

Continued 
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Table A-23 (continued) 

31 32 33 34 35 36 37 38 39 40 

1 0.4220 0.4188 0.4156 0.4127 0.4096 0.4068 0.4040 0.4015 0.3989 0.3964 
2 .2921 .2898 .2876 .2854 .2834 .2813 .2794 .2774 .2755 .2737 
3 .2475 .2463 .2451 .2439 .2427 .2415 .2403 .2391 .2380 .2368 
4 .2145 .2141 .2137 .2132 .2127 .2121 .2116 .2110 .2104 .2098 
5 .1874 .1878 .1880 .1882 .1883 .1883 .1883 .1881 .1880 .1878 
6 0.1641 0.1651 0.1660 0.1667 0.1673 0.1678 0.1683 0.1686 0.1689 0.1691 
7 .1433 .1449 .1463 .1475 .1487 .1496 .1505 .1513 .1520 .1526 
8 .1243 .1265 .1284 .1301 .1317 .1331 .1344 .1356 .1366 .1376 
9 .1066 .1093 .1118 .1140 .1160 .1179 .1196 .1211 .1225 .1237 

10 .0899 .0931 .0961 .0988 .1013 .1036 .1056 .1075 .1092 .1108 
11 0.0739 0.0777 0.0812 0.0844 0.0873 0.0900 0.0924 0.0947 0.0967 0.0986 
12 .0585 .0629 .0669 .0706 .0739 .0770 .0798 .0824 .0848 .0870 
13 .0435 .0485 .0530 .0572 .0610 .0645 .0677 .0706 .0733 .0759 
14 .0289 .0344 .0395 .0441 .0484 .0523 .0559 .0592 .0622 .0651 
15 .0144 .0206 .0262 .0314 .0361 .0404 .0444 .0481 .0515 .0546 
16 0.0000 0.0068 0.0131 0.0187 0.0239 0.0287 0.0331 0.0372 0.0409 0.0444 
17 - - .0000 .0062 .0119 .0172 .0220 .0264 .0305 .0343 
18 - - - - .0000 .0057 .0110 .0158 .0203 .0244 
19 - - - - - - .0000 .0053 .0101 .0146 
20 - - - - - - - - .0000 .0049 

jX 41 42 43 44 45 46 47 48 49 50 

1 0.3940 0.3917 0.3894 0.3872 0.3850 0.3830 0.3808 0.3789 0.3770 0.3751 
2 .2719 .2701 .2684 .2667 .2651 .2635 .2620 .2604 .2589 .2574 
3 .2357 .2345 .2334 .2323 .2313 .2302 .2291 .2281 .2271 .2260 
4 .2091 .2085 .2078 .2072 .2065 .2058 .2052 .2045 .2038 .2032 
5 .1876 .1874 .1871 .1868 .1865 .1862 .1859 .1855 .1851 .1847 
6 0.1693 0.1694 0.1695 0.1695 0.1695 0.1695 0.1695 0.1693 0.1692 0.1691 
7 .1531 .1535 .1539 .1542 .1545 .1548 .1550 .1551 .1553 .1554 
8 .1384 .1392 .1398 .1405 .1410 .1415 .1420 .1423 .1427 .1430 
9 .1349 .1259 .1269 .1278 .1286 .1293 .1300 .1306 .1312 .1317 

10 .1123 .1136 .1149 .1160 .1170 .1180 .1189 .1197 .1205 .1212 
11 0.1004 0.1020 0.1035 0.1049 0.1062 0.1073 0.1085 0.1095 0.1105 0.1113 
12 .0891 .0909 .0927 .0943 .0959 .0972 .0986 .0998 .1010 .1020 
13 .0782 .0804 .0824 .0842 .0860 .0876 .0892 .0906 .0919 .0932 
14 .0677 .0701 .0724 .0745 .0765 .0783 .0801 .0817 .0832 .0846 
15 .0575 .0602 .0628 .0651 .0673 .0694 .0713 .0731 .0748 .0764 

16 0.0476 0.0506 0.0534 0.0560 0.0584 0.0607 0.0628 0.0648 0.0667 0.0685 
17 .0379 .0411 .0442 .0471 .0497 .0522 .0546 .0568 .0588 .0608 
18 .0283 .0318 .0352 .0383 .0412 .0439 .0465 .0489 .0511 .0532 
19 .0188 .0227 .0263 .0296 .0328 .0357 .0385 .0411 .0436 .0459 
20 .0094 .0136 .0175 .0211 .0245 .0277 .0307 .0335 .0361 .0386 

21 0.0000 0.0045 0.0087 0.0126 0.0163 0.0197 0.0229 0.0259 0.0288 0.0314 
22 - - .0000 .0042 .0081 .0118 .0153 .0185 .0215 .0244 
23 - - - - .0000 .0039 .0076 .0111 .0143 .0174 
24 - - - - - - .0000 .0037 .0071 .0104 
25 - - - - - - - - .0000 .0035 
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Table A-24 

Critical values of the W test for normality 
(from Shapiro and Wilk, 1965, with kind perniissionof Biornetrika Trustees, London) 

0.01 0.02 0.05 0.10 

3 0.753 0.756 0.767 0.789 
4 .687 .707 .748 .792 
5 .686 .715 .762 .806 

6 0.713 0.743 0.788 0.826 
7 .730 .760 .803 .838 
8 .749 .778 .818 .851 
9 .746 .791 ,829 ,859 

10 .781 .806 .842 .869 

11 0.792 0.817 0.850 0.876 
12 .805 .828 .859 .883 
13 .814 .837 .866 .889 
14 .825 .846 .874 .895 
15 .835 .855 .881 .901 

16 0.844 0.863 0.887 0.906 
17 .851 .869 .892 .910 
18 .858 .874 .897 .914 
19 .863 .879 .901 .917 
20 .868 .884 .905 .920 

21 0.873 0.888 0.908 0.923 
22 .878 .892 .911 .926 
23 .881 .895 .914 .928 
24 .884 .898 .916 .930 
25 .888 .901 .918 .931 

26 0.891 0.904 0.920 0.933 
27 .894 .906 .923 .935 
28 .896 .908 .924 .936 
29 .898 .910 .926 .937 
30 .900 .912 .927 .939 

31 0.902 0.914 0.929 0.940 
32 .904 .915 .930 .941 
33 .906 .917 .931 .942 
34 .908 .919 .933 .943 
35 .910 .920 .934 .944 

36 0.912 0.922 0.935 0.945 
37 .914 .924 .936 .946 
38 .916 .925 .938 .947 
39 .917 .927 .939 .948 
40 .919 .928 .940 .949 

41 0.920 0.929 0.941 0.950 
42 .922 .930 .942 .951 
43 .923 .932 .943 .951 
44 .924 .933 .944 .952 
45 .926 .934 .945 .953 

46 0.927 0.935 0.945 0.935 
47 .928 .936 .946 .954 
48 .929 .937 .947 .954 
49 .929 .937 .947 .955 
50 .930 .938 .947 .955 
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Table A-25 

Critical values of the normal probability plot correlation coefficient r 
(from Filliben. 1975. with kind permission of 

American Statistical Association, Washington, D.C.) 

n 
.000 .005 .01 .025 .05 .10 

3 .866 .867 .869 .872 .879 .891 
4 .784 .813 .822 .845 .868 .894 
5 .726 .803 .822 .855 .879 .902 

6 .683 .818 .835 .868 .890 .911 
7 .684 .828 .847 .876 .899 .916 
8 .619 .841 .859 .886 .905 .924 
9 .595 .851 .868 .893 .912 .929 

10 .574 .860 .876 .900 .917 .934 

11 .556 .868 .883 .906 .922 .938 
12 .539 .875 .889 .912 .926 .941 
13 .525 .882 .895 .917 .931 .944 
14 .512 .888 .901 .921 .934 .947 
15 .500 .894 .907 .925 .937 .950 

16 .489 .899 .912 .928 .940 .952 
17 .478 .903 .916 .931 .942 .954 
18 .469 .907 .919 .934 .945 .956 
19 .460 .909 .923 .937 .947 .958 
20 .452 .912 .925 .939 .950 .960 

21 .445 .914 .928 .942 .952 .961 
22 .437 .918 .930 .944 .954 .962 
23 .431 .922 .933 .947 .955 .964 
24 .424 .926 .936 .949 .957 .965 
25 .418 .928 .937 .950 .958 .966 

26 .412 .930 .939 .952 .959 .967 
27 .407 .932 .941 .953 .960 .968 
28 .402 .934 .943 .955 .962 .969 
29 .397 .937 .945 .956 .962 .969 
30 .392 .938 .947 .957 .964 .970 

31 .388 .939 .948 .958 .965 .971 
32 .383 .939 .949 .959 .966 .972 
33 .379 .940 .950 .960 .967 .973 
34 .375 .941 .951 .960 .967 .973 
35 .371 .943 .952 .961 .968 .974 

36 .367 .945 .953 .962 .968 .974 
37 .364 .947 .955 .962 .969 .975 
38 .360 .948 .956 .964 .970 .975 
39 .357 .949 .957 .965 .971 .976 
40 .354 .949 .958 .966 .972 .977 

41 .351 .950 .958 .967 .972 .977 
42 .348 .951 .959 .967 .973 .978 
43 .345 .953 .959 .967 .973 .978 
44 .342 .954 .960 .968 .973 .978 
45 .339 .955 .961 .969 .974 .978 

46 .336 .956 .962 .969 .974 .979 
47 .334 .956 .963 .970 .974 .979 
48 .331 .957 .963 .970 .975 .980 
49 .329 .957 .964 .971 .975 .980 
50 .326 .959 .965 .972 .977 .981 

55 .315 .962 .967 .974 .978 .982 
60 .305 .965 .970 .976 .980 .983 
65 .296 .967 .972 .977 .981 .984 
70 .288 .969 .974 .978 .982 .985 
75 .281 .971 .975 .979 .983 .986 

80 .274 .973 .976 .980 .984 .987 
85 .28 .974 .977 .981 .985 .987 
90 .263 .976 .978 .982 .985 .988 
95 .257 .977 .979 	I .983 .986 .989 

100 .252 .979 .981 	J .984 .987 .989 
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INTERPOLATION 

Tables generally furnish the value of a function z which depends on I, sometimes 
2, argumental (s independent), variables x, y. Not always all values of the argumental 
variable (= arguments) are recorded so that the correspondent functional values can only 
be guessed by interpolation. 

Linear Interpolation 

The argument x for which the function z is searched, is comprised between x 1  and 
x 2 . From the table we obtain z 1  and z 2  in correspondence to x1 and x 2 , then the 
interpolated value z corresponding to x, is obtained by 

(ic) 	z = z + 
x-x

'(z 2 -z 1 ) 
1 	x 2 -x 1  

Example i. We want the critical value of t33 and a = .01. We get from Table 
A- 4 

x 1  = 30 	x 	33 	x2 	40 

= 	= 2.457 	t 33 	z = ? 	 t 0  = z 2  = 2.423 

On using () we get 

z = 2.457 + 	.034 = 2.4468 
10 

Example ii. Having obtained from an experiment t 25  = 1.935 we would like to know 
the value of a. From Table A-4 we have now 

t25( 95) 	x 	1.708 	t 

	

25(1—a) = X 	1.935 	t25 ( .975 ) 	x 2  = 2.050 

	

a1 = z 1  = . 05 	a 	z 	? 	a 2  = z 2  = . 025 

HCF10E 

z = .05 + .227 (-.025) = .0339 .325 

Harmonic Interpolation 

In some tables the last arguments are very high or even infinite. In these cases 
a harmonic interpolation is indicated. This is achieved by choosing the last finite 
argument and dividing it by the other arguments, e.g. as in Table A-6.1. The last finite 
argument is 120 and so we transform the last arguments to 

120 120 	120 	120 	
, 	

120 - = 0. 	= 1, 	-- = 2, 	---- = 3 	= 4, 	etc.30 
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Since these values are linear, we can apply to them (). 

Example iii. In Table A-6.1we look for the value of F2150 . We put 

120 	120 	120 0 	x=-T= .6 	x 2 	-- 	I 

z 1  = 3.00 	F2150 	z = 	 z 2  = 3.07 

Applying () we obtain 

z = 3.00 + 	.07 = 3.056 

Areal Interpolation 

If the function z depends on 2 variables x and y it may be interesting to guess 
the function of 2 values which are not reported in the table. If we indicate by x 1 , x 2 , 
and y 1 , y 2  the couples c-F argumental values which comprise x and y, then we get from the 
table four values of the function z, for which we evaluate the means for each row and 
column, thus obtaining 

yl 	V 

	

I 	 I 

x l 	 z 	 z 12  

x 

x 2  - - - 	z 2' 	 z 22  

2 

Formula () becomes now 

x-x 1 	 y-y 1  
(C) 	z = z 	+ 2 	+ 	( 	- 	) 

11 	X 2 X 1 	 Y2Y 	•2 	.1 

This is equivalent to () first applied to x and then to y or vice versa, but 
only if neither x nor y have been transformed for harmonic interpolation. 

Example iv. 	We look for F 	in Table A-6.3. 17 is comprised between 12 and 
24, 33 between 30 and 40. F-er1'ce, 






