MANUAL OE MIDHEDS
 IN AQUATIC ENVIRONMEDNH ROSPARCEI

Part 5 - Statistical Tests

With the cooperation of the E) Fited Nations Dinvironment Programme

FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS

UNITED NATIONS ENVIRONMENT PROGRAMME

MANUAL OF METHODS IN AQUATIC ENVIRONMENT RESEARCH Part 5 - Statistical Tests
by
F. Möller

Istituto di Economía e Politica Agraria University of Milan, Italy

FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 1979

The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.

$$
\begin{aligned}
& \text { Pol } \\
& \text { Water /I } \\
& \text { PA }
\end{aligned}
$$

M-45

ISBR 92-5-100767-5

The copyright in this book is vested in the Food and Agriculture Oranization of the United Nations. The book may not be reproduced, in whole or in part, by any method or process, without written permission from the copyright holder. Applications for such permission, with a statement of the purpose and extent of the reproduction desired, should be addressed to the Director, Publications Division, Food and Agriculture Organization of the United Nations, Via delle Termed di Caracalla, 00100 Rome, Italy.

PREPARATION OF THIS MANUAL
This manual was prepared as part of a cooperative project of the United Nations Environment Programme entitled

FAO(GFCM)/UNEP Joint Coordinated Project on Pollution in the Mediterranean with the Food and Agriculture Organization of the United Nations as cooperating agency.

Distribution:

FAO Fisheries Department
FAO Regional Fishery Officers Mediterranean Pollution Project Selector SM/SI UNEP

Bibliographic reference:

Möller, F. (1979)
FAO Fish.Tech.Pap., (182):131 p.
Manual of methods in aquatic environment research. Part 3. Statistical tests

FAO manuals. Water pollution. Statistical analysis. Pollution surveys Bioassays.

PREFACE

Under the Mediterranean Action Plan developed by the United Nations Environment Programme, the Co-ordinated Mediterranean Pollution Monitoring and Research Programme was established. As part of this programme, an FAD(GFCM)/UNEP Joint Co-ordinated Project on Pollution in the Mediterranean was initiated. The project aims at organizing baseline studies and monitoring of metals, particularly mercury, and of DDT, PCBs and other chlorinated hydrocarbons, in marine organisms, and at establishing research projects on the effects of pollutants on aquatic organisms and ecosystems.

Further to a Manual on Sampling and Analyses of Biological Material (FAO Fish.Tech. Pap. 158), this Manual on Statistical Tests has been prepared to assist laboratories participating in the FAO/UNEP project in proper planning of monitoring programmes and research projects, and to facilitate the evaluation of data and results obtained. However, although the examples in the manual were chosen to specifically suit the FAO/UNEP project, this manual is expected to be of use to all laboratories involved in analysing pollution levels and measuring effects of pollution on aquatic life.

The manual was prepared by Dr. F. Möller, Milano. Drs. M. Bernhard, Fiascherino, and W. Besch, Karlsruhe, assisted in the design of the examples given. Final editing was carried out by Dr. H. Naeve, Fishery Resources and Environment Division, FAO. The views expressed in this manual are those of the author and do not necessarily represent the views of either FAO or UNEP.

CONTENTS

Page

1. TESTS FOR POLLUTION MONITORING PROGRAMMES 1
1.1 Introduction 1
1.2 Population Parameters 1
1.3 Simple Sample Statistics 3
1.4 Composite Sample Statistics 4
1.4.1 One-factor models 5
1.4.2 Two-factor nested model 8
1.5 Regression or Covariance Models 9
1.6 The Problem of the Sample Size 11
1.6.1 One sample 11
1.6.2 Two samples 12
1.7 Examples 14
1.7.1 Example of a one-factor model 17
1.7.2 Example of a regression test 18
1.7.3 Example of a two-factor nested model with the determination of the variance components for individuals and pretreatment 19
1.7.4 Example of a two-factor nested model with the determination of the variance components for samples and individuals 20
1.7.5 Example of a covariance model 21
1.7.6 Example of a comparison of three regression lines 23
1.7.7 Example of a set-up of a (quality) control plan 27
1.7.8 Example of the determination of the sample sizes in an experiment with two samples 29
2. TESTS FOR BIOLOGICAL POLLUTION RESEARCH 31
2.1 Introduction 31
2.1.1 Hypotheses, tests and errors 31
2.1.2 Confidence intervals and tests 35
2.2 Hypotheses about Frequencies 36
2.2.1 Test whether the frequency π of a character in a population equals π_{0} or it is larger 36
2.2.2 Test whether the frequency π of a character in a population equals π_{0} or it is smaller 36
2.2.3 Comparison of two frequencies: test of independence (both margins fixed) 37
2.2.4 Comparison of c frequencies: test of homogeneity (one margin fixed) 38
2.2.5 Comparison of an observed with a theoretical distribution: tests of goodness of fit 40
2.2.6 Comparison of an observed with the normal distribution 41
2.2.6.1 Probit analysis 41
2.2.6.2 Normality tests 41
2.2.7 Comparison of two distributions 45
2.2.8 A combination of type I errors 48
2.3 Hypotheses about Location Measures 48
2.3.1 Test whether the mean μ, of an approximately normal population with unknown variance, equals a preassigned value μ_{0} 48
2.3.2 Comparison of two means sampled from approximately normal populations with unknown variances 49
2.3.3 Comparison of the location of two populations with any distribution 51
2.3.4 Comparison of the means of c samples 51
2.3.5 Multiple a posteriori comparison 53
Page
2.4 Hypotheses about Variances 55
2.4.1 Test whether the variance σ^{2} of an approximately normal population equals the preassigned value σ_{0}^{2}
55
55
2.4.2 Comparison of two variances of approximately normal populations 56
2.4.3 Comparison of c variances of approximately normal populations: tests of homoscedasticity 56
2.4.4 Comparison of c variances of any distribution 58
2.5 Hypotheses about the Interdependence (Correlation) and the Dependence (Regression) in Bivariate Variables 58
2.5.1 Test of no correlation in a bivariate normal population
58
58
2.5.2 Test whether the correlation coefficient ρ of a bivariate normal population equals a preassigned value ρ_{0}
59
59
2.5.3 Comparison of two correlation coefficients of bivariate normal populations
59
59
2.5.4 Tests of no correlation in bivariate populations with any distribution 60
2.5.5 Hypotheses about regression coefficients of normal bivariate populations 62
2.6 Other Tests 63
2.6.1 Test for outliers 63
2.6.2 Tests for randomness
64
64
2.7 Examples 66
2.7.1 Examples of tests about frequencies 66
2.7.2 Examples of tests about location measures 78
2.7.3 Examples of tests about variances 87
2.7.4 Examples of tests about regression and correlation 88
2.7.5 Examples of miscellaneous tests 90
3. REFERENCES 93
ANNEX: STATISTICAL TABLES 99
A-1 Common logarithms of factorials 99
A-2 Correction factors for ranges c_{n}, d_{n} and g_{n} and critical values for the median h_{n} 99
A-3 Critical values of the normal variate z 100
A-4 Critical values of the t_{v} variate 101
A-5 Critical values of the X_{v}^{2} variate 102
A-6 Critical values of the $F_{\nu_{1}}, \nu_{2}$ variate 103
A-7 Critical values of the Kolmogoroff-Smirnov test 106
A-8 Critical values of the Mann-Whitney-Wilcoxon U-test 107
A-9 Acceptance intervals r_{1}, r_{2} for the Run test r 108
A-10 Critical values of Wilcoxon's pair difference test 110
A-11 Critical values of the test $\lambda_{n}=(\bar{x}-\mu) / R$ 111
A-12 Critical values of the studentized range $Q v, k$ 112
A-13 Critical values of $F_{\text {max }}$ 116
A-14 Critical values of Spearman's and Kendall's rank correlation coefficients 117
A-15 Critical values of Dixon's test for outliers r_{n} 117
A-16 Critical values of Grubb's test for outliers T_{n} 118
Page
A-17 Critical values of $Z_{n}=R / s$ for outliers 119
A-18 Critical values of the mean successive difference test η_{n}^{2} and of the serial correlation coefficient $R_{h \cdot n}$ 120
A-19 The probit transformation $Y\left(x_{j}\right)$ 121
A-20 Minimum and maximum working probits, range and weighting coefficients 122
A-21 Critical values of Van der Waerden's X test 123
A-22 Critical lower values $L(\alpha)$ of the binomial distribution 124
A-23 Coefficients a_{i} for the w test for normality 125
A-24 Critical values of the W test for normality 127
A-25 Critical values of the normal probability plot correlation coefficient r_{n} 128
INTERPOLATION 129

1. TESTS FOR POLLUTION MONITORING PROGRAMMES

1.1 Introduction

Statistical data are observations about characteristics or attributes of individuals (e.g. Hg concentration, weight of specimens). The group of individuals under study is called a (statistical) population. Such a population could be all Mullus barbatus of a given area. If the frequency distribution of the attributes of the population is known, it is possible to describe it by a density function (e.g. the normal distribution or distribution of Gauss), which is an analytical function defined by a number of parameters.

The entire population is often too large to be studied as a whole or perhaps can only be defined hypothetically. It is therefore more convenient to study a subset of the population. Such a subset is known as a sample. The goal of sampling is to get information about the frequency distribution of the population, or more precisely, about the population parameters. For this reason sample functions are built to estimate the population parameters. These estimates are also known as sample statistics or simply statistics. If the investigation is based on a sample, the estimates will depend on the particular sample chosen; a different value may be obtained, if a different sample is selected. This variation in the values from sample to sample is known as sampling variability. Its magnitude can be ascertained by the theory of probability. Generally, the difference between a statistic and the true population value, i.e. the sampling error, increases as more factors influence the statistic. Factors which influence the statistics may be the age of specimen, location and time of sampling, etc. The main task of the research worker is, therefore, to identify the possible factors, and the task of the statistician to establish the amplitude of the factors in terms of their variability or error. If an effective estimation of the frequency distribution is achieved, the form of the density function is known. If it is not, one has to decide on the form of the function. This problem is known as specification and does not have an easy solution. Sometimes it can be solved from theoretical considerations of how the frequency distribution is generated, but more often the distribution form is disregarded, concentrating the attention on a few parameters to which most distribution parameters are strictly related.

1.2 Population Parameters

A population is designated univariate if only one character (y) is considered, and multivariate if more than one character (x, y) is considered. The most common univariate parameters are the mean μ as a location measure, the variance σ^{2}; the standard deviation σ and the coefficient of variation $V=\frac{\sigma}{\mu} 100$ as dispersion measures.

The most important multivariate parameter is the covariance $\sigma_{x y}$ as a measure of correlation.

For a finite population we could calculate the parameters if we had measurements for all the individuals (specimens) in the population. In practice this is generally impossible, certainly in the case of destructive sampling, so that we can only expect a true population. We define expected value of any quantity its average value, averaged over the entire population.

Even though the exact frequency distribution is unknown, the knowledge of the mean and the variance is sufficient to make precise statements about univariate frequency distributions with the use of Tchebycheff's inequality:

$$
P\{|y-\mu|<\lambda \sigma\} \geqslant 1-\frac{1}{\lambda^{2}}
$$

which gives us a lower limit $P\}$ to the amount of frequency lying within a range of $\pm \lambda \sigma$ on either side of the mean. If the population is unimodal, i.e. it has only one mode ($=\mu_{0}$), which is the most frequent value in the distribution, then the inequality can be improved so that the lower limit to the amount of frequency lying within a range of $\pm \lambda \sigma_{0},\left(\sigma_{0}^{2}=\sigma^{2}+\left(\mu-\mu_{0}\right)^{2}\right)$, on either side of the mode, is increased to $1-\left(\frac{2}{3 \lambda}\right)^{2}$. This inequality is due to Camp-Meidell.

In Table I we compare the frequency area of a normal distribution within the intervals of $\pm \lambda \sigma$ with the above inequalities.

Table I
Frequency area of normal distributions

λ	Normal distribution	Tchebycheff for any distribution	Camp-Meidell for unimodal distributions
	.683	$\geqslant 0$	$\geqslant .556$
2	.954	$\geqslant .75$	$\geqslant .889$
3	.997	$\geqslant .889$	$\geqslant .951$
4	$>.999$	$\geqslant .938$	$\geqslant .972$

It can be seen that estimates of the frequency by the inequalities of Tchebycheff and Camp-Meidell are fairly good for values of λ larger than 3 . This means, if large differences between sample values or functions are observed, the conclusions are significant even if the frequency function is not known.

When two or more variables are involved the main interest lies in the joint distribution of the variables. We may describe this as the problem of statistical relationship for which a useful distinction may be made. We may be interested either in the interdependence between a number of the variables (not necessarily all), or in the dependence of one or more variables upon the others, which, and this is a fundamental difference, are often under control of the experimenter. This means that the levels of the dependent variable (species, time and area of sampling, etc.) can be chosen by the experimenter.

We can say that the study of interdependence leads to the theory of correlation and the study of dependence to the theory of regression.

1.3 Simple Sample Statistics

Characteristics, parameters or density distributions of the population can be estimated in several ways. The most common is to estimate the parameters through sample statistics. Of course the estimate might differ from the parameter in any particular case, and hence there is a margin of uncertainty. The extent of this uncertainty can be expressed in terms of the sampling variance of the estimator, which is the variance of the distribution function of the estimates, i.e. the frequency distribution of the estimates of all possible samples of the same size, which can be drawn from one population. In other words, the sampling variance is a measure of theprecision of the estimates.

If we denote the population parameter by θ, then any interval which specifies two statistics, T_{1} and T_{2}, such that the probability that the population parameter lies within the interval $\left(T_{1}, T_{2}\right)$ is $1-\alpha$, where α is a preassigned positive constant ($\leqslant 1$), then the interval $\left(T_{1}, T_{2}\right)$ is said to provide an interval estimate, or a confidence interval for the parameter θ at the confidence level $1-\alpha$. On the other hand, if L_{1} and L_{2} $\left(\geqslant L_{1}\right)$ are two sample functions such that the probability that the interval (L_{1}, L_{2}) will include at least $100 \gamma \%$ of the population, with γ a positive constant ($\leqslant 1$), is equal to $1-\alpha$, then the limits L_{1} and L_{2} are called the $100 \gamma \%$ tolerance limits for the population at the confidence level of $1-\alpha$.

Whereas consistent estimates of parameters can generally be given without reference to the frequency distribution of the population, exact confidence and tolerance limits cannot be evaluated without knowing the population or parent distribution. In this event, distribution free methods can be used. If order characteristics of the population, like the median or the range (not parameters in the sense previously defined) are to be estimated, then non-parametric methods can solve the problem. It is even possible to estimate some parameters by non-parametric methods.

In the following we will confine ourselves to the estimation of problems which can arise with the monitoring project \because. The population mean μ is estimated by the sample mean:

$$
\bar{y}=\frac{1}{n} \sum y_{j}
$$

hence, the sample mean is itself a statistic. The sampling variance of this statistic is measured by:

$$
\sigma_{\bar{y}}^{2}=\frac{\sigma^{2}}{n} .
$$

Its square root known as the standard error, $\sigma_{\bar{y}}$, should not be confused with the standard deviation σ.

The population variance σ^{2} is estimated by the statistic (unbiased estimate)

$$
s^{2}=\frac{\Sigma\left(y_{j}-\bar{y}\right)^{2}}{n-1} .
$$

The numerator of the variance, $\sum\left(y_{j}-\bar{y}\right)^{2}$, is referred to as the sums of squares (SS), and the ratio of $S S$ with the degrees of freedom ($D F=n-1$), as mean squares (MS). An approximation of s, very useful for small samples, is the range: $R=$ max-min observed value.

The estimate of the covariance is given by:

$$
s_{x y}=\frac{1}{n-1} \sum\left(x_{j}-\bar{x}\right)\left(y_{j}-\bar{y}\right)
$$

and of the linear correlation coefficient, by:

$$
r=\frac{s_{x y}}{s_{x} s_{y}}
$$

The sampling variance and the correlation coefficient need the knowledge of higher order moments of the population distribution. Simple formulas are available only if the population is normal or at least approximately normal (see also Section 2.4).

The variance of s^{2}, with normal parent distribution, is: $\frac{2 \sigma^{4}}{n}$; of s it is: $\frac{\sigma^{2}}{2 n}$; and of r : $\frac{\left(1-\rho^{2}\right)^{2}}{n}$.

1.4 Composite Sample Statistics

The scope of sampling is the estimation of the population parameters with the greatest accuracy possible. It is possible to increase the efficiency of estimations by a convenient sampling plan that evaluates independently different factors at different levels which may influence observations about individuals. This influence is called the effect of the factor level. Levels are the different values which each factor can assume, e.g. if one factor is time, the different dates are the levels. As a consequence, besides a smaller sampling variance, information about the importance of the factors in terms of variability, measured by their contribution to the total variance, can be obtained. The contributions to the total variance are estimated by analyses of variance (ANOVA).

The levels of the factors can be fixed or random. In the first case the main interest lies in estimating and testing hypotheses about (i.e. inference) the effects of the factor levels in the model. These effects are what we call fixed effects. In the second case the levels are thought to be a random sample out of a theoretical population of levels and the prime interest lies in estimating the variances of this population. Effects of this nature are called random effects and the variances associated with random effects, variance components. In considering the difference between fixed and random models, the important question is that of inference: when inferences are going to be confined to the effects in the model, the effects are considered fixed; when inferences will be made about a population of effects from which those in the data are considered to be a random sample, then the effects are considered as random.

For any balanced random model the method of estimating variance components relies on the MS of the ANOVA for the fixed effects model.

For unbalanced data there are several methods each of which simplifies to the method used for balanced data.

1.4.1 One factor models

One way of obtaining composite samples is that to consider one factor with p levels $\left(\theta_{1} \ldots \theta_{i} \ldots \theta_{p}\right)$. For each level a sample of measurements on $n_{i}(i=1 \ldots p)$ individuals is obtained. The result of such a sampling design can be summarized in a two way table, where also the fundamental sample functions are reported (Table II).

Table II
A one factor sampling plan

Samples	Factor levels θ_{i}	Overall
	$i=1 \ldots i=p$	
	$\begin{array}{ccc} y_{11} & \cdots \cdots & y_{p 1} \\ \vdots & & \vdots \\ \vdots & & \vdots \\ y_{1 n_{1}} & \cdots \cdots & y_{p n_{p}} \end{array}$	
Number of individuals per sample n_{i}	$n_{1} \quad \cdots \cdots \cdot n_{p}$	$n=\sum n_{i}$
Sample mean \bar{y}_{i}	$\bar{y}_{1} \quad \ldots \ldots \bar{y}_{p}$	$\bar{y}=\frac{1}{n} \sum \bar{y}_{i} n_{i}$
Sample SS	$\operatorname{SS}\left(\varepsilon_{1}\right) \ldots . . \operatorname{SS}\left(\varepsilon_{p}\right)$	$\operatorname{SS}(\varepsilon)=\sum \operatorname{SS}\left(\varepsilon_{i}\right)$
Sample variance s_{i}^{2}	$s_{1}^{2} \quad \cdots \cdots s_{p}^{2}$	$s_{\varepsilon}^{2}=\frac{1}{n-p} \operatorname{SS}(\varepsilon)$

The model of such a design can be written as follows:

$$
y_{i j}=\mu+\theta_{i}+\varepsilon_{i j}\left\{\begin{array}{l}
i=1 \ldots p \\
j=1 \ldots n_{i}
\end{array}\right.
$$

where $\varepsilon_{i k}$ indicates the error or the residual variation term. That means if the factor had not any influence on the observations then $\theta_{i}=0$ for all i and the expected value of $y_{i j}$ would be the overall mean μ. If it had, then for the i th level the expected value of $y_{i j}$ would be $\mu+\theta_{i}$. The difference between the observation $y_{i j}$ and the expected value $\mu+\theta_{i}$ is the error or residual term, i.e. $y_{i j}-\left(\mu+\theta_{i}\right)=\varepsilon_{i j}$.

If homoscedasticity (i.e. if all variances s_{i}^{2} do not differ significantly between each other: tests of Bartlett, Cochran, Scheffé\%) can be assumed, a pooled estimate of the population variance between individuals within each sample can be obtained by the MS:

$$
s_{\varepsilon}^{2}=\frac{\sum\left(n_{i}-1\right) s_{i}^{2}}{\sum n_{i}-p}=\frac{S S(\varepsilon)}{n-p}
$$

This MS is often called the residual or the within (samples) or the error MS, and it is an estimate of the population error variance σ_{ε}^{2}.

On the other hand, considering only the p sample means \bar{y}_{i}, we then obtain the SS due to the factor after eliminating the influence due to the mean μ :

$$
\begin{aligned}
& \operatorname{SS}\left(\theta_{i} \mid \mu\right)=\sum\left(\bar{y}_{i}-\bar{y}\right)^{2} n_{i} \\
& \operatorname{MS}\left(\theta_{i} \mid \mu\right)=\frac{\sum\left(\bar{y}_{i}-\bar{y}\right)^{2} n_{i}}{p-1} .
\end{aligned}
$$

This MS is thus a measure of the influence of the factor, and it is an estimate of:

$$
\sigma_{\varepsilon}^{2}+\frac{1}{p-1} \sum n_{i} \theta_{i}^{2}
$$

in the fixed effects model, or

$$
\sigma_{\varepsilon}^{2}+n_{I} \sigma_{I}^{2}
$$

in the random effects model, where

$$
n=\frac{1}{p-1}\left(n-\frac{\sum n_{i}^{2}}{n}\right)
$$

or $n_{I}=\frac{n}{p}=m$, if all n_{i} are equal, $n_{i}=m . \quad \sigma_{I}^{2}$ indicates the variance associated with the factor.

Usually the results of such an analysis are summarized in a table, called analysis of variance (ANOVA) of the model $\mu+\theta_{i}+\varepsilon_{i j}$, like Table III, where $E[M S]$ stands for expected MS. It is now possible to compare $\operatorname{MS}\left(\theta_{i} \mid \mu\right)$ with the residual MS by the F-test, with $p-1$ and $n-p$ degrees of freedom (DF):

$$
F_{p-1, n-p}=\frac{M S\left(\theta_{i} \mid \mu\right)}{s_{\varepsilon}^{2}}
$$

which enables us to decide, at a given level of significance, if the effect of the factor affects the sample means.

Now we have two possibilities:
(i) The means are not significantly different
(ii) The means are significantly different (*).
(*) If the means are significantly different, it may be that in one sample there are some observations which differ greatly from the others. The problem of deciding whether one or more of a set of observations has come from a different population from that generating the other observations, leading thus to different means faces every practical statistician, and perhaps, indeed, most practical scientists. It is the problem of outlying observations or outliers (see Chapter 2.6.1). Sometimes it is possible to replace the value with a corrected value or to repeat the observation. If no reason for the unusual value can be found, the problem is more difficult and no unique solution can be suggested, but the one to eliminate observations in the statistical analysis and to report them along with the statistical analysis. This allows the reader of the report to judge for himself; If he wishes he can replace the outliers and rerun the analysis.

Table III
ANOVA of model $\mu+\theta_{i}+\varepsilon_{i j}$

	Source of variation	SS	DF	MS	$\begin{gathered} E[M S] \\ \text { Expected MS } \end{gathered}$
	Mean	$\operatorname{SS}(\mu)=n \bar{y}^{2}$	1		
	Factor (I after μ)	$\operatorname{ss}\left(\theta_{i} \mid \mu\right)$	p-1	$\operatorname{MS}\left(\theta_{i} \mid \mu\right)$	$\sigma_{\varepsilon}^{2}+n_{I} \sigma_{I}^{2}$
	Residual	SS(ε)	$n-p$	MS(ε)	σ_{ε}^{2}
	TOTAL:	SS	n		

Under the first circumstance, the population mean can be estimated directly by \bar{y} with a sampling (standard) error of:

$$
s_{\bar{y}}=\frac{s^{s}}{\sqrt{n}} .
$$

Under the second circumstance, the estimation of a unique mean is arbitrary if the frequency N_{i} of the individuals of the population subject to the single levels of the factor are not known. If they are, or can be guessed through the sample, then the estimation of the mean is obtained by:

$$
\bar{y}^{\prime}=\frac{1}{N} \sum N_{i} \bar{y}_{i} \text { with } N=\sum N_{i} \text {. }
$$

If the sample frequencies can be supported to be proportional to the analogous in the population, then \bar{y} ' reduces to \bar{y}.

The standard error of \bar{y} for $N_{i} \gg n_{i}$ is then:

$$
\begin{equation*}
\hat{\sigma}_{\bar{y}}=\sqrt{\frac{S S\left(\theta_{i} \mid \mu\right)}{n}} \tag{1.4-1}
\end{equation*}
$$

In the case of random effects models, if the means are not significantly different σ_{I}^{2} may be put equal to zero; otherwise it can be estimated solving the system:

$$
\left\{\begin{aligned}
\operatorname{MS}\left(\theta_{i} \mid \mu\right) & =\sigma_{\varepsilon}^{2}+n_{I} \sigma_{I}^{2} \\
\operatorname{MS}(\varepsilon) & =\sigma_{\varepsilon}^{2} .
\end{aligned}\right.
$$

Hence,

$$
\hat{\sigma}_{I}^{2}=S_{I}^{2}=\frac{M S\left(\theta_{i} \mid \mu\right)-M S(\varepsilon)}{n_{I}} .
$$

1.4.2 Two factor nested model

The extension of the one factor model includes one or more other factors. We will briefly discuss only the situation of one more factor, since all other and more complex designs are based on these. We restrict ourselves to the situation of a two-way nested design. This is obtained when we consider one factor with p levels as for the single factor design, and for each level a second factor at q_{i} levels.

The n_{i} observations of the sample for the $i^{\text {th }}$ level of the first factor are classified in q_{i} sub-samples, with frequencies $n_{i j}, j=1 \ldots q_{i}, \sum_{j} n_{i j}=n_{i}$. In accordance with the notational convention the original frequencies n_{i} will j now be replaced by n_{i}.

Such a classification is called a two-way nested or hierarchical classification, which means that the classification of the individuals is nested within the samples obtained for the different factor levels.

The model is now:

$$
y_{i j k}=\mu+\theta_{i}+\theta_{j(i)}+\varepsilon_{i j k}\left\{\begin{array}{l}
i=1 \ldots p \tag{1.4-2}\\
j=1 \ldots q_{i} \\
k=1 \ldots n_{i j}
\end{array}\right.
$$

where θ_{i} specifies the effect of the first factor and $\theta_{j(i)}$ that one of the second nested within the first.

The estimate of the mean is readily obtained if the population frequencies are known or estimable through the sample frequencies:

$$
\bar{y}=\frac{1}{N} \sum \sum N_{i j} \bar{y}_{i j} \quad \text { or } \quad \frac{1}{n} \sum \sum n_{i j} \bar{y}_{i j} .
$$

The MS and expected MS due to the factors and the residual are obtainable as:

$$
\left.\begin{array}{rl}
\operatorname{MS}\left(\theta_{i}\right) & =\frac{1}{p-1} \sum\left(\bar{y}_{i}-\bar{y}\right)^{2} n_{i} ;
\end{array} \quad E\left[\operatorname{MS}\left(\theta_{i}\right)\right]=\sigma_{\varepsilon}^{2}+n_{I I} \sigma_{I I}^{2}+n_{I} \sigma_{I}^{2}\right\}\left(\begin{array}{ll}
\operatorname{MS}\left(\theta_{j(i)}\right) & =\frac{1}{\sum q_{i}-p} \sum \sum\left(\bar{y}_{i j}-\bar{y}_{i} .\right)^{2} n_{i j} ; \\
E\left[\operatorname{MS}\left(\theta_{j(i)}\right)\right]=\sigma_{\varepsilon}^{2}+n_{I I}^{\prime} \sigma_{I I}^{2} \\
\sigma_{\varepsilon}^{2} & =\frac{1}{n-\sum q_{i}} \sum \sum \sum\left(y_{i j k}-\bar{y}_{i j}\right)^{2}
\end{array}\right\}(1.4-3)
$$

with,

$$
\begin{aligned}
& n_{I I}=\frac{1}{p-1}\left[\sum_{i}^{p} \frac{\sum_{j}^{q_{i}} n_{i j}^{2}}{n_{i}}-\frac{\sum \sum n_{i j}^{2}}{n \cdots}\right] \\
& n_{I I}^{\prime}=\frac{1}{\sum q_{i}-p}\left[n \cdots-\sum_{i}^{p} \frac{\sum_{j}^{q_{i}} n_{i j}^{2}}{n_{i}}\right] \\
& n_{I}=\frac{1}{p-1}\left[n \cdots-\frac{\sum_{i} n_{i}^{2}}{n \cdots}\right] \text {. }
\end{aligned}
$$

If $n_{i j}=$ constant $=m$, and $q_{i}=$ constant $=q$, then we have $n_{I I}=n_{I I}^{\prime}=m$ and $n_{I}=m q$.

Hypotheses about the significance of the two factors can be tested by the ratios:

$$
\frac{\operatorname{MS}\left(\theta_{i}\right)}{\operatorname{MS}\left(\theta_{j(i)}\right)} \text { and } \frac{\operatorname{MS}\left(\theta_{j(i)}\right)}{\hat{\sigma}_{\varepsilon}^{2}} .
$$

1.5 Regression or covariance models

Another way to obtain more information out of a set of observations, is to consider the dependence of the variable studied, y, upon one or more other variables, x, w, \ldots which are concomitant to the first. This leads to the regression analysis and the analysis of covariance which will only be briefly outlined.

The general model is that of an ANOVA which will be broadened to:

$$
\begin{equation*}
y_{i j}=\mu+\theta_{i}+\beta x_{i j}+\varepsilon_{i j} \tag{1.5-1}
\end{equation*}
$$

where $x_{i j}$ are the values of the concomitant variable, and β is a measure of the dependence of y on x (regression coefficient). This model can be thought of as a synthesis of two models, viz. the one-way classification:

$$
\begin{equation*}
y_{i j}=\mu+\theta_{i}+\varepsilon_{i j} \tag{1.5-2}
\end{equation*}
$$

and the simple regression model:

$$
\begin{equation*}
y_{i j}=\mu+\beta x_{i j}+\varepsilon_{i j} \tag{1.5-3}
\end{equation*}
$$

for which the ANOVA of Table IV can be considered (Searle, 1971).

The left half of the table leads to the test of the hypothesis whether, after having estimated μ and θ_{i}, the regression on x indicated by $\beta \mid \mu, \theta_{i}$ introduced in the first model (1.5-1) is significant or not.

The right half of the table leads to the test of the hypothesis whether the factor effects θ_{i} are significant after having removed the influence of μ and $\beta \mid \mu$.

Generalizations of model (1.5-1) consider different regression coefficients β_{i} instead of only one for all factor levels. This is the so-called intraclass regression model. In that case $S S\left(\beta \mid \mu, \theta_{i}\right)$; with 1 DF must be substituted by:

$$
\operatorname{SS}\left(\beta_{i} \mid \mu, \theta_{i}\right)=\sum_{i} \frac{\left[\sum\left(x_{i j}-\bar{x}_{i}\right)\left(y_{i j}-\bar{y}_{i}\right)\right]^{2}}{\sum\left(x_{i j}-\bar{x}_{i}\right)^{2}} \text {; with } p, D F
$$

and $S S(\beta \mid \mu)$ by:

$$
S S\left(\beta_{i} \mid \mu\right)=\sum_{i} \frac{\left[\sum\left(x_{i j}-\bar{x}\right)\left(y_{i j}-\bar{y}\right)\right]^{2}}{\sum\left(x_{i j}-\bar{x}\right)^{2}} \text {; with }(p-1), D F \text {. }
$$

Hence, the DF for the residual $S S$ are reduced to $n-2 p$.

Table IV
ANOVA for the regression model degrees of freedom in brackets [DF]

1.6 The problem of the sample size
1.6.1 One sample

In determining the sample size one has to make statements about:
(a) The precision ε of the estimates
(b) The confidence level $1-\alpha$, with which decisions are taken.

Hence, if $\phi(x)$ is the true and unknown population parameter, $f(x)$ its estimate obtained through a sample, above statements can be summarized as:

$$
\begin{equation*}
P[|f(x)-\phi(x)|<\varepsilon]=1-\alpha \tag{1.6-1}
\end{equation*}
$$

This means that the probability to obtain distances of deviations between the estimate and the true value smaller than ε, is $1-\alpha$. In general to solve (1.6-1) the frequency distribution of the population must be known or assumed. If the estimate is the mean \bar{x} or a proportion $\frac{k}{n}$ of the sample, then (1.6-1) can be easily solved, in most cases, even without knowing the exact distribution. In case of the mean, we have Student's test (2.3-2):

$$
\begin{equation*}
t_{n-1}=\frac{\bar{x}-\mu}{\sqrt{\frac{N-n}{N} \frac{s^{2}}{n}}} \tag{1.6-2}
\end{equation*}
$$

Where the factor $\frac{N-n}{N}$ is the finite population correction of the variance and can be omitted if N is much larger than the expected sample size. In (1.6-1) clearly $\varepsilon=\bar{x}-\mu$, so that on taking the critical t value at the confidence level of $1-\frac{\alpha}{2}$, i.e. $t_{\left(1-\frac{\alpha}{2}\right)}$, we have:

$$
\begin{equation*}
\varepsilon=t_{\left(1-\frac{\alpha}{2}\right)} \sqrt{\frac{N-n}{N} \frac{s^{2}}{n}} \tag{1.6-3}
\end{equation*}
$$

for a finite population, or

$$
\begin{equation*}
\varepsilon=t_{\left(1-\frac{\alpha}{2}\right)} \frac{s}{\sqrt{n}} \tag{1.6-4}
\end{equation*}
$$

for large populations or universe. Hence we have:

$$
\begin{equation*}
n=\frac{\left(\frac{t_{\left(1-\frac{\alpha}{2}\right)^{s}}^{s}}{\varepsilon}\right)^{2}}{1+\frac{1}{N}\left(\frac{t_{\left(1-\frac{\alpha}{2}\right)} s}{\varepsilon}\right)^{2}} \tag{1.6-5}
\end{equation*}
$$

for finite populations, or

$$
\begin{equation*}
n=\left(\frac{t_{\left(1-\frac{\alpha}{2}\right)^{s}}}{\varepsilon}\right)^{2} \tag{1.6-6}
\end{equation*}
$$

for large populations or universe.

If neither $t\left(1-\frac{\alpha}{2}\right.$, nor s are known in advance they must be guessed. This is best done by guessing the $\left(1-\frac{\alpha}{2}\right)$ ratio $W=\varepsilon / t,\left(1-\frac{\alpha}{2}\right)$ which is the desired standard error of the estimate \bar{x}, obtaining $n=\left(\frac{s}{W}\right)^{2}$. $\left(1-\frac{\alpha}{2}\right)$ The sample variance s^{2} can only be estimated from previous sampling of a similar or related population, or by intelligent guess-work (Cochran, 1960). In practice informations about s^{2} are obtained by a pilot sampling. Then $t\left(1-\frac{\alpha}{2}\right)$ can be substituted by the normal approximation $t_{n\left(1-\frac{\alpha}{2}\right)}=z_{\left(1-\frac{\alpha}{2}\right)} \sqrt{\frac{n}{n-2}}$, or much easier ${ }^{\left(1-\frac{\alpha}{2}\right)}$ sample size expected, or iteratively.

1.6.2 Two samples

We consider now the case of determining the sizes of two samples for which the means should be compared by the test (2.3-9):

$$
\begin{equation*}
t_{n_{1}+n_{2}-2}=\frac{\bar{x}_{1}-\bar{x}_{2}}{\sqrt{\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}\left(\frac{n_{1}+n_{2}}{n_{1} n_{2}}\right)}} \tag{1.6-7}
\end{equation*}
$$

1.7 Examples

In the monitoring pilot projects, four different sources of variation (i.e. factors) can be distinguished (Bernhard, 1976):

1. Variability of the chemical analytical method (between determinations)
2. Variability of the chemical pretreatment (between pretreatments)
3. Variability caused by intrinsic (genetic) biological factors (between "samples", same site and same date)
4. Variability caused by environmental factors (between sites and date or between dates, same sites).

Now suppose we consider nine samples of Mullus barbatus, which differ from environmental factors, i.e. they differ with sites and time-factor 4 (Stöppler et al.,i.pr.).

Each sample is composed of a number of individuals (fishes) which differ from factor 3 .

For all individuals of the first sample (see Table V) two pretreatments have been performed with two determinations.

For all other samples (2 to 9) data for only one pretreatment with two determinations are given. There is only one fish in sample No. 2 with a missing observation.

For all samples, except No.4, lengths and weights are given for each fish.

The resulting observations do not fit in a balanced scheme, since not all samples have data for all factor levels.

Although nowadays the high-speed computer can analyse these models, though with some approximations, we suggest for the sake of clearness, to follow a stepwise analysis, treating at the beginning all samples separately.

Table V
Concentrations $y_{i j h k}$ of a contaminant, lengths and weights for 9
$y_{\text {ijhk }}$ of a contaminant, lengths and
samples of Mullus barbatus

Sample Number	Individual Number	$\mathrm{y}_{\text {ijhk }}$				$\underset{i j}{x_{i j}} \text { length }$	$\begin{gathered} w_{i j} \\ \text { weight } \end{gathered}$
		Pretreatment $\mathrm{h}=1$		Pretreatment $\mathrm{h}=2$			
		Determination		Determination			
		$\mathrm{k}=1$	$\mathrm{k}=2$	$\mathrm{k}=1$	$\mathrm{k}=2$		
1	01	0.037	0.039	0.046	0.044	15.3	75.19
	02	0.266	0.264	0.270	0.267	13.3	47.61
	03	0.135	0.139	0.159	0.159	10.8	23.77
	04	0.095	0.100	0.112	0.109	11.5	27.44
	05	0.101	0.102	0.116	0.114	11.3	28.24
	06	0.213	0.213	0.215	0.215	12.3	34.24
	07	0.228	0.203	0.219	0.219	11.9	29.05
	08	0.167	0.185	0.186	0.186	13.6	50.01
	09	0.766	0.750	0.686	0.678	12.8	37.01
	10	0.054	0.054	0.046	0.040	14.2	55.66
2	01	0.252	0.246			16.0	73.58
	02	0.264	0.258			13.0	40.99
	03	0.149	0.146			14.3	52.03
	04	0.308				13.6	45.91
	05	0.271	0.247			12.8	34.43
	06	0.315	0.305			12.5	35.04
	07	0.163	0.152			13.5	42.57
	08	0.380	0.379			14.2	51.96
	09	0.109	0.103			13.0	41.72
	10	0.072	0.072			12.3	36.53
3	01	0.228	0.224			14.0	63.3
	02	0.243	0.228			14.5	59.6
	03	0.209	0.211			14.2	57.9
	04	0.184	0.184			13.2	46.8
	05	0.168	0.164			14.3	57.9
4	01	0.066	0.062				
	02	0.081	0.081				
	03	0.073	0.071				
	04	0.071	0.074				
	05	0.058	0.059				
	06	0.048	0.049				
	07	0.045	0.045				
	08	0.088	0.086				
	09	0.118	0.125				
	10	0.045	0.041				
5	01	0.062	0.062			16.5	67.0
	02	0.051	0.057			14.0	46.23
	03	0.043	0.044			15.0	53.5
	04	0.081	0.082			15.0	56.1
	05	0.118	0.122			15.0	59.59

Continued

Sample Number	Individual Number	$\mathrm{y}_{\text {ijhk }}$				$x_{i j}$ length	$w_{i j}$weight
		Pretreatment $\mathrm{h}=1$		Pretreatment $\mathrm{h}=2$			
		Determination		Determination			
		$\mathrm{k}=1$	$\mathrm{k}=2$	k=1	$\bar{k}=2$		
6	01	0.051	0.051			13.0	31.93
	02	0.096	0.097			13.0	32.15
	03	0.144	0.167			14.5	43.39
	04	0.218	0.202			14.5	55.16
	05	0.102	0.104			14.5	38.61
7	01	0.331	0.331			11.0	19.49
	02	0.280	0.287			10.5	17.34
	03	0.173	0.180			12.5	27.07
	04	0.135	0.132			12.0	25.59
	05	0.115	0.127			13.5	32.77
8	01	0.420	0.410			16.0	73.40
	02	0.557	0.555			16.0	72.00
	03	0.115	0.110			17.0	92.42
	04	0.179	0.186			11.0	26.67
	05	0.168	0.167			11.0	24.29
	06	0.154	0.154			10.5	19.18
	07	0.089	0.102			11.0	18.71
	08	0.269	0.166			14.0	50.57
	09	0.258	0.262			11.5	25.64
	10	0.257	0.242			16.0	85.47
9	01	0.085	0.083			10.0	20.00
	02	0.147	0.147			8.5	10.90
	03	0.092	0.092			10.0	17.26
	04	0.189	0.192			9.0	12.59
	05	0.050	0.052			10.5	22.05
	06	0.030	0.030			8.0	9.94
	07	0.027	0.021			10.5	25.74
	08	0.047	0.054			10.0	21.29
	09	0.024	0.024			9.5	17.52
	10	0.116	0.123			9.5	16.61
	11	0.046	0.050			9.0	12.01
	12	0.053	0.054			9.0	15.91
	13	0.086	0.086			9.0	15.91
	14	0.060	0.064			10.5	19.24
	15	0.077	0.079			12.5	35.21
	16	0.049	0.050			10.0	18.06
	17	0.164	0.173			9.5	13.46
	18	0.073	0.078			9.5	14.64
	19	0.087	0.091			12.0	29.27
	20	0.054	0.055			9.5	15.05
	21	0.092	0.096			10.5	23.00

1.7.1 Example of a one-factor model

We consider sample No. 2 (Table V) of $p=10$ individuals (= specimen), ignoring lengths and weights, and set up Table VI following Table II determining all parameters. Since for nine individuals we have only two observations (= determinations), evidently the sample SS is equal to the sample variance. In the case of the fourth level ($=$ specimen) we have only one determination so that the sample variance cannot be evaluated. Therefore, this specimen does not bring any contribution to the error or residual MS, which in this case is equal to the determination MS.

Homoscedasticity is tested by Cochran's test (2.4-12):

$$
g_{9,2}=\frac{s^{2}[9]}{\sum s_{1}^{2}}=\frac{28.8}{45.75}=0.63
$$

At the 5% significance level, we have from Figure $6 \% g_{9,2(.95)}=.64$ which is larger than the observed value; hence, with some optimism, the $\quad, 2(.95)$ variances can be considered as homogeneous. This is due especially to the fact that all variances of Table VI have only 1 DF .

A one factor $\left\{=\frac{\text { Table VI }}{\text { individuals }\}}\right.$ sampling plan

$y_{i j}$	Factor levels i										Overall
	1	2	3	4	5	6	7	8	9	10	
$\begin{aligned} & j=1 \\ & j=2 \end{aligned}$	$\begin{aligned} & 0.252 \\ & 0.246 \end{aligned}$	$\begin{aligned} & 0.264 \\ & 0.258 \end{aligned}$	$\begin{aligned} & 0.149 \\ & 0.146 \end{aligned}$	0.309 -	$\begin{aligned} & 0.271 \\ & 0.247 \end{aligned}$	$\begin{aligned} & 0.315 \\ & 0.305 \end{aligned}$	$\begin{aligned} & 0.163 \\ & 0.152 \end{aligned}$	$\begin{aligned} & 0.380 \\ & 0.379 \end{aligned}$	$\begin{aligned} & 0.109 \\ & 0.103 \end{aligned}$	$\begin{aligned} & 0.072 \\ & 0.072 \end{aligned}$	
n_{i}	2	2	2	1	2	2	2	2	2	2	19
\bar{y}_{i}	0.249	0.261	0.1475	0.308	0.259	0.310	0.1575	0.3795	0.106	0.072	0.22058
Sample $\operatorname{SS}\left(\times 10^{-5}\right)$	1.8	1.8	0.45	0	28.8	5	6.05	0.05	1.8	0	45.75
$s_{i}^{2}\left(\times 10^{-5}\right)$	1.8	1.8	0.45	-	28.8	5	6.05	0.05	1.8	0	$s_{\varepsilon}^{2}=5.08339$

[^0]Further, we obtain SS due to the individuals,

$$
\operatorname{SS}\left(\theta_{i} \mid \mu\right)=0.171029 \text { with MS }\left(\theta_{i} \mid \mu\right)=0.019
$$

So that,

$$
F=\frac{M S\left(\theta_{i} \mid \mu\right)}{s_{\varepsilon}^{2}}=373.8
$$

which is extremely high, stating that the variability between individuals is incomparably higher than that of determinations.

If the mean \bar{y} can be accepted as an estimate of the population mean μ, the sampling error must be calculated by (1.4-1):

$$
s_{\bar{y}}=\sqrt{\frac{0.171029}{19}}=0.095 .
$$

1.7.2 Example of a regression test

Now we alsc consider the lengths of individuals of sample No. 2 (Table V) and evaluate the regression of the individual measures of Table VI on the lengths.

We immediately have:

$$
\begin{aligned}
s_{x y} & =\frac{1}{n-1} \sum \sum\left(x_{i}-\bar{x}\right)\left(y_{i j}-\bar{y}\right)=\frac{1}{n-1} \sum\left(x_{i}-\bar{x}\right)\left(\bar{y}_{i}-\bar{y}\right) n_{i} \\
& =\frac{1}{n-1}\left[\sum x_{i} \bar{y}_{i} n_{i}-n \bar{x} \bar{y}\right] \\
& =\frac{1}{18}[57.099-19 \times 13.5 \times 0.22058]=0.0266 \\
s_{x}^{2} & =\frac{1}{n-1} \sum\left(x_{i}-\bar{x}\right)^{2} n_{i}=\frac{1}{n-1}\left[\sum x_{i}{ }^{2} n_{i}-n \bar{x}^{2}\right] \\
& =\frac{1}{18}[3492.48-3467.88]=1.367
\end{aligned}
$$

And analogously,

$$
s_{y}^{2}=\frac{1}{18}[1.095933-0.92445]=0.00953
$$

Thus, the correlation coefficient between the concentration measures and the length in the example considered is $r=.232$. To test if this value is sufficiently high to assure a dependence of the concentration measures $y_{i j}$ on the length x_{i}, we must apply test (2.5-2) obtaining

$$
t_{17}=\sqrt{.232} \sqrt{1-(.232)^{2}} \sqrt{17}=.983
$$

This lies well below the critical value $t_{17}(.975)=2.11$ (Table $\left.A-4\right)$ so that we may conclude that there is no evidence that a dependence between $y_{i j}$ and x_{i} does exist, and that it is hence meaningless to evaluate a regression line;

1.7.3 Example of a two-factor nested model with the determination of the variance components for individuals and pretreatment

We consider only sample No. 1 (Table V), ignoring lengths and weights. With the remaining data we can set up a 3-way nested table: determinations nested within pretreatments, which are nested within individuals. The model can therefore be written as follows:

$$
y_{1 j h k}=\mu_{1}+\theta_{1 j}+\theta_{h(1 j)}+\theta_{k(1 j h)}
$$

or dropping the sub-script 1 ,

$$
\begin{aligned}
y_{j h k} & =\mu+\theta_{j}+\theta_{h(j)}+\theta_{k(j h)} \\
& =\mu+\theta_{j}+\theta_{h(j)}+\varepsilon_{j h k}
\end{aligned}
$$

which is like model (1.4-2).
Since there are no replications, the last term $\theta_{k(j h)}$ is confounded with the error term $\varepsilon_{j h k}$. Consequently, the model can be treated as a \quad-way nested model with replications. The complete ANOVA is reported in Table VII. In the last column are the MS due to the factors which all differ significantly.

Table VII
ANOVA of model $y_{j h k}=\mu+\theta_{j}+\theta_{h(j)}+\theta_{k(j h)}$

It is thus possible to evaluate the variance components from (1.4-3):

$$
\left.\begin{array}{l}
0.000027=\sigma_{\varepsilon}^{2} \\
0.000769=\sigma_{\varepsilon}^{2}+2 \sigma_{I I}^{2} \\
0.153988=\sigma_{\varepsilon}^{2}+2 \sigma_{I I}^{2}+4 \sigma_{I}^{2}
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
s_{\varepsilon}^{2}=0.000027 \\
s_{I I}^{2}=0.000374 \\
s_{I}^{2}=0.038305
\end{array}\right.
$$

Hence it results that the variance due to individuals is more than 100 times larger than that due to pre-treatments, which in turn is almost 14 times larger than that due to determinations.

1.7.4 Example of a two-factor nested model with the determination of the variance components for samples and individuals

Now we consider sample Nos. 2 to 9 (Table V), still ignoring lengths and weights, excluding fish $i=2, j=4$ because of the missing observation. The aim of this analysis is to estimate the MS between samples, individuals and determinations. The model is now without sub-script h,

$$
\begin{aligned}
y_{i j k}= & \mu+\theta_{i}+\theta_{j(i)}+\theta_{k(i j)} \\
\mu & +\theta_{i}+\theta_{j(i)}+\varepsilon_{i j k}
\end{aligned}
$$

with ANOVA reported in Table VIII.

Table VIII
ANOVA of model $y_{i j k}=\mu+\theta_{i}+\theta_{j(i)}+\theta_{k(i j)}$

Again the MS differ significantly, so that we can evaluate the variance components by (1.4-3) obtaining:

$$
\begin{aligned}
& n_{I I}=n_{I I}^{\prime}=m=2 \\
& n_{I}=\frac{1}{p-1}\left[n \cdots-\frac{m^{2}\left[q_{i}^{2}\right.}{n \cdots}\right]=\frac{1}{7}\left[140-\frac{3288}{140}\right]=16.64
\end{aligned}
$$

Hence,

$$
\left.\begin{array}{l}
0.000099=\sigma_{\varepsilon}^{2} \\
0.011891=\sigma_{\varepsilon}^{2}+n_{I I}^{1} \sigma_{I I}^{2} \\
0.099772=\sigma_{\varepsilon}^{2}+n_{I I} \sigma_{I I}^{2}+n_{I} \sigma_{I}^{2}
\end{array}\right\}\left\{\begin{array}{l}
s_{\varepsilon}^{2}=0.000099 \\
s_{I I}^{2}=0.005896 \\
s_{I}^{2}=0.005281
\end{array}\right.
$$

It is seen that the variances due to samples and individuals are almost equal, but they are considerably (59 times) larger than that due to determinations.

Comparing these results with those of Table VII, significant differences must be observed, both in determination and individual MSs and variance components. This is probably due to some outliers and/or some wrong determinations. Hence a synthesis of both tables is not advisable.

1.7.5 Example of a covariance model

Now we eliminate sample No. 4 (Table V) because there are no measurements about lengths and weights of individuals, and we determine the mean concentration $\bar{y}_{i j}$ for all individuals, so that we now have 3 values: $\bar{y}_{i j}, x_{i j}$ and $w_{i j}$.

The models which can be analysed separately are:
and,

$$
\bar{y}_{i j}=\mu+\bar{\theta}_{i}+\beta x_{i j}+\varepsilon_{i j}
$$

$$
\bar{y}_{i j}=\mu+\bar{\theta}_{i}+\gamma_{w_{i j}}+\varepsilon_{i j}
$$

The corresponding ANOVAs are reported in Tables IX and X. It can be seen that neither the introduction of $x_{i j}$ nor that of $w_{i j}$ are of significant importance, since the residual MS remain almost unaltered, reducing only from 0.01139 without the concomitant variables to 0.01134 considering $x_{1 j}$ and even increasing to 0.01143 considering $w_{i j}$.

We may thus conclude that the concentration does not depend significantly on the length and weight of the fishes. But it must be underlined that in the samples considered here, lengths and weights did not differ very much so that one could hardly expect another result. Regression models are only meaningful if the regressor, i.e. the independent variable has a variance as large as possible.

Instead of the above models, it is possible to include $x_{i j}$ and $w_{i j}$ contemporarily to obtain the model,

$$
\bar{y}_{i j}=\mu+\bar{\theta}_{i}+\beta x_{i j}+\gamma w_{i j}+\varepsilon_{i j}
$$

Also, in this case, the introduction of the concomitant variables does not reduce the error MS which instead increases to 0.01147 , so that the ANOVA table is not reported here.

Table IX
ANOVA of the regression model $\bar{y}_{i j}=\mu+\bar{\theta}_{i}+\beta x_{i j}+\varepsilon_{i j}$ [DF]

$\beta \mid \mu, \bar{\theta}_{i}$	MODELS			$\bar{\theta}_{i} \mid \mu, \beta$	
SS $(\mu)=1.839023$ [1]					
$\mathrm{SS}\left(\bar{\theta}_{1} \mid \mu\right)=0.331211$	[7]		$(\beta \mid \mu)$	$=0.108838$	[1]
$S S\left(\mu, \bar{\theta}_{i}\right)=2.170234$	[8]		(μ, B)	$=1.947861$	[2]
SS $\left(\beta \mid \mu, \bar{\theta}_{i}\right)=0.014385$	[1]		$\left(\bar{\theta}_{i} \mid \mu, \beta\right)$	$=0.236758$	[7]
Residual	$=$	0.703327	[62]		
TOTAL:	$=$	2.887946	[71]		

Table X
ANOVA of the regression model $y_{i j}=\mu+\bar{\theta}_{i}+\gamma w_{i j}+\varepsilon_{i j}$ [DF]

$\gamma \mid \mu, \bar{\theta}_{i}$			MODELS		$\bar{\theta}_{i} \mid \mu, \gamma$			
$S S(\mu)=1.839023$ [1]								
$\operatorname{SS}\left(\bar{\theta}_{i} \mid \mu\right)$	$=0.331211$		[7]		$(\gamma \mid \mu)$		0.096325	[1]
SS $\left(\mu, \bar{\theta}_{i}\right)$	$=2.170234$		[8]		(μ, γ)		1.935342	[2]
SS $\left(\gamma \mid \mu, \bar{\theta}_{i}\right)$	$=0.009054$		[1]		$\left(\bar{\theta}_{i} \mid \mu, \gamma\right)$		0.243940	[7]
Residual		SS	$=$	0.708658	[62]			
TOTAL:		SS	$=$	2.887946	[71]			

1.7.6 Example of a comparison of three regression lines

We analyse the data $y_{i j}$ obtained by Renzoni (1977) for the years 1973 ($i=1$), 1975 ($i=2$) and $1976(i=3)$ about the mercury content in small-scaled Scorpion fishes (Scorpaena porcus) with one concomitant variable, $w_{i j}$ (body weight), Table XI.

Table XI
Scorpaena porcus - Mercury content
(white muscle) $y_{i j}$ and body weight $w_{i j}$

j	1973		1975		1976	
	$y_{1 j}$	${ }^{W} 1 j$	$y_{2 j}$	$W_{2 j}$	$y_{3 j}$	$w_{3 j}$
1	1.61	28.	1.6	27.2	1.23	78.6
2	1.93	28.	1.24	28.2	3.046	85.
3	1.52	36.	1.25	28.4	1.468	79.
4	1.64	37.	1.1	29.9	2.514	87.5
5	1.55	37.	1.07	29.9	2.518	82.4
6	1.64	38.	1.41	30.1	1.776	83.6
7	1.72	38.	1.1	30.7	2.084	78.6
8	1.3	38.	1.12	31.2	2.067	79.
9	2.28	38.	0.93	31.3	1.328	82.
10	2.16	38.	1.02	31.7	1.433	82.5
11	1.68	39.	1.05	32.8	1.343	33.1
12	1.65	40.	1.13	36.5	1.213	35.1
13	1.7	40.	0.96	37.1	1.004	35.2
14	1.7	41.	1.20	37.4	1.852	55.5
15	1.9	41.	1.26	38.5	1.855	57.5
16	1.85	43.	1.11	39.1	1.555	72.7
17	2.12	45.	1.15	43.	1.245	62.
18	1.64	47.	1.41	45.2	2.297	63.
19	1.9	47.	1.27	45.5	2.233	65.
20	1.92	48.	1.09	45.7	1.457	78.
21	2.0	54.	1.5	46.8	1.454	67.7
22	2.14	50.	1.85	52.4	1.571	66.
23	2.66	60.	1.45	54.1	3.805	74.1
24	1.89	60.	1.48	56.7	1.485	63.2
25	2.22	63.	1.41	57.5	1.176	87.2
26	2.0	64.	1.04	60.1	1.729	74.9
27	2.04	66.	1.35	60.6	1.795	80.2
28	2.45	66.	1.31	65.	. 893	92.2
29	2.0	69.	1.26	65.5	1.663	87.9
30	2.18	70.	0.85	68.1	1.805	91.1
31	2.3	72.	1.18	70.7	1.833	102.
32	2.48	83.	1.40	74.3	2.691	107.
33	2.11	85.	1.49	81.	2.344	113.

Continued

j	1973		1975		1976	
	$y_{1 j}$	$W_{1 j}$	$y_{2 j}$	$w_{2 j}$	$y_{3}{ }^{\text {d }}$	$W_{3 j}$
34	2.34	85.	1.56	81.3	1.286	134.
35	2.16	91.	1.34	81.3	1.141	132.
36	2.18	94.	1.59	90.6	3.541	143.
37	2.16	109.	1.93	91.9	2.122	175.
38	2.66	111.	1.82	92.	2.711	180.
39	2.76	113.	1.35	93.2	2.453	170.
40	3.0	123.	1.38	97.9	2.218	190.
41	3.0	128.	1.37	104.6	1.410	44.3
42	3.93	197.	1.91	106.6	1.131	54.6
43			1.64	107.	2.141	58.
44			2.38	109.7	1.693	65.
45			1.32	117.	1.323	43.8
46			1.89	117.7	1.736	54.3
47			1.81	135.9	1.705	74.2
48			1.51	138.8	1.568	77.1
49			1.72	147.7	2.503	86.2
50					. 984	22.3
51					1.108	26.4
52					1.086	28.7
53					. 976	34.5
54					1.812	145.6
55					1.402	39.4
56					1.832	168.
57					1.723	120.4
58					1.876	127.2
59					2.144	210.
60					2.068	190.
Means	2.0969	64.5238	1.3808	65.8245	1.7909	87.93
Overall means		$\bar{y}=1.7429$		$\bar{w}=74.2464$		

The analytical model can be written as follows:

$$
y_{i j}=\mu+\theta_{i}+\beta_{i} w_{i j}+\varepsilon_{i j} \quad\left\{\begin{array}{l}
i=1, \ldots, 3 \\
j=1, \ldots, n_{i}
\end{array}\right.
$$

and the ANOVA is reported in Table XII.

Table XII
ANOVA of the model
$y_{i j}=\mu+\theta_{i}+\beta_{i} w_{i j}+\varepsilon_{i j}$ [DF]

$\beta_{i} \mid \mu, \theta_{i}$			MODELS		$\theta_{i} \mid \mu, \beta_{i}$		
$S S(\mu)=458.69276 \quad[1]$							
$\operatorname{ss}\left(\theta_{i} \mid \mu\right)$	11.82622	[2]		$\left(\beta_{i} \mid \mu\right)$	=	8.921592	[3]
SS $\left(\mu, \theta_{i}\right)$	470.51898	[3]		$\left(\mu, \beta_{i}\right)$	$=$	467.614352	[4]
$\operatorname{SS}\left(\beta_{i} \mid \mu, \theta_{i}\right)$	13.55092	[3]		$\left(\theta_{i} \mid \mu, \beta_{i}\right)$	$=$	16.455548	[2]
SS ($\beta \mid \mu, \theta_{i}$)	11.86722	[1]					
$\operatorname{SS}\left(\beta_{i}-\beta \mid \mu, \theta_{i}\right)$	1.68370	[2]					
Residual	SS	$=$	22.57095	[145]		(MS $=0.1$	
TOTAL:	SS	$=$	506.64085	[151]			

From Table XII it is now possible to test if the 3 regression lines have the same slopes, by:

$$
F_{2.145}=\frac{1.68370}{2 \times 0.15566}=5.41
$$

which is much larger than the critical value at the confidence level of .99 so that we conclude that the slopes differ significantly. Analogously, it is seen that also the intercepts differ significantly.

The estimates of the regression lines reported in Figure 1 are for:

$$
\begin{aligned}
& \text { 1973: } y_{1}=1.2846+0.01259 w_{1} \\
& \text { 1975: } y_{2}=0.9928+0.00589 w_{2} \\
& \text { 1976: } \quad y_{3}=1.2744+0.00587 w_{3}
\end{aligned}
$$

Comparing the regression lines of the years 1975 and 1976 (without considering 1973) it results (Table XIII) that the slopes do not differ significantly so that the two lines can be considered parallel.

Figure 1 Regression lines of mercury content (white muscle) $y_{i j}$ and body weight $w_{i j}$
Table XIII
ANOVA for the model $y_{i j}=\mu+\theta_{i}+\beta_{i} w_{i j}+\varepsilon_{i j}$ [DF]

Clearly, in such a situation, where the regression on the concomitant variable is so significant, it is almost useless to describe the results (of every year) by a mean and a standard deviation. At least the comparisons should be referred to a single point of the dependent variables, e.g. the mean \bar{w}, for which the regression lines assume the value of: $\bar{y}_{i}+b_{i}\left(\bar{w}-\bar{w}_{i}\right)$, with standard deviation (or error of prevision):

$$
s_{\varepsilon} \sqrt{\frac{n+1}{n}+\frac{\left(\bar{w}-\bar{w}_{i}\right)^{2}}{\sum_{i}\left(w_{i j}-\bar{w}_{i}\right)^{2}}}
$$

Since in this case $\bar{w}=74.246$ we obtain, with s_{ε}, the square root of the residual MS (of Table XIII) the following values:

Years	1973	1975	1976
Expected value	2.219	1.430	1.711

with an error of prevision of $\approx .157$.

1.7.7 Example of a set-up of a (quality) control plan

We consider now the problem of the quality control of the determinations in an experiment like that of Table V. Further we will guess the most convenient number of times determinations must be performed according to some prescriptions.

We start analysing the ranges of the determinations of all samples and report them in Table XIV. We prefer an analysis based on ranges instead of standard deviations because the number of repetitions is as small as $2(=m)$. Sample 1 because of repeated pretreatments is counted twice.

For each sample, at the bottom of Table XIV we have reported the sum of the ranges and their number q_{i}. The mean range is hence:

$$
\bar{R}=\frac{414}{90}=4.60
$$

and the variance is estimated (see Chapter 2.4) by $\bar{R} / d_{m}=\bar{R} / d_{2}\left(d_{2}\right.$ from Table $\left.A-2\right)$. Hence an upper control limit (2 σ) for the ranges is given by:

$$
\begin{aligned}
\bar{R}_{2 \sigma} & =\bar{R}+2 \bar{R} / d_{2} \\
& =4.60+2 \times 4.60 / 1.128 \\
& =12.76 .
\end{aligned}
$$

Table XIV
Ranges ($\times 1000$) within determinations of samples $i=1$; 9 of Table V

$j^{\text {i }}$			2	3	4	5	6	7	8	9	Σ
1	2	2	6	4	4	0	0	0	10		
2	2	3	6	15	0	6	1	7	2	0	
3	4	0	3	2	2	1	$\underline{23}$	3	5	00	
4	5	3	24	0	3	1	16	3	7	$3{ }^{3} 4$	
5	1	2	10	4	1	4	2	12	1	22	
6	0	0	11		1				0	0	
7	$\underline{25}$	0	1		0				13	6 6 9	
8	18	0	6		2				3	75	
9	16	8	0		7				4	0	
10	0	6			4				15	71	
21										4	
q_{i}	10	10	9	5	10	5	5	5	10	21	90
$\sum R_{i j}$	73	24	67	25	24	12	42	25	60	62	414

It is seen from Table XIV that 9 determinations which are underlined lie above the 2σ control limit. The reasons for these exceptional ranges should be verified in the laboratory. The mean ratio of ranges above the upper control limit is: $\bar{p}=9 / 90=.1$, whilst the ratios of the single samples range from $p=0$ to $p=.4$.

Given this situation of observed exceptional ranges (which could be different, if for instance 3σ upper limits had been chosen), let us try to find the most convenient number of determinations. Following the rules of 1.6 we have to state the precision $\varepsilon=\pi-p$ and the confidence level $1-\alpha$.

In the precision statement π stands for a limiting acceptance level, which must be higher than the observed rate p, since this a typical unilateral decision statement. Hence, $\varepsilon>0$. In our case we could choose $\pi_{1}=.15$ or $\pi_{2}=.20$, etc. With the confidence level of $1-\alpha=.95$, then analogously to $(1.6-\hat{\imath})$ we can write:

$$
z_{(1-\alpha)}=\frac{\pi-p}{\sqrt{\frac{N-n}{N} \frac{\pi(1-\pi)}{n}}} \quad ; \quad \pi>p
$$

where z is the normal variate, $\pi(1-\pi)$ the expected variance of the number of exceptional ranges, N the total number of individuals, and $n \leqslant N$ the estimated number of individuals to be analysed in accordance with the preliminary statements. It follows:

$$
n=\frac{A}{1+\frac{A}{N}} \quad \text { with } \quad A=\frac{z_{(1-\alpha)}^{2} \pi(1-\pi)}{(\pi-p)^{2}} \quad \text { and } \quad \pi>p
$$

For $\pi \leqslant p$ we will always leave $n=N$, what means that the sample equals the population.

Taking the q_{i} values of Table V as population sizes N (besides ∞), we have evaluated, for $p=.1$ and some theoretical ratios π with $\alpha=.05$, the expected number n, obtaining:

	$N=\infty$	21	10	9	5
$\pi=.15$	$n=138$	19	10	9	5
	$=.20$	44	15	9	8
	$=.25$	23	11	7	7
	$=.30$	15	9	6	6

That means for instance: If we control at a confidence level of .95, the determinations of N individuals, such that the percentage of ranges falling above the 2σ limit is not higher than 25% (i.e. $\pi=.25$), then for $N=21$ it is sufficient to repeat only 11 determinations, for $N=10$ only 7, whereas for $N=5$ all 5 determinations must be repeated, i.e. must be taken twice.

It will be noted that for a universp $(N=\infty)$ the values of n reported in the above table are extraordinarily low as soon as $\pi \geqslant .20$.

1.7.8 Example of the determination of the sample sizes in an experiment with two samples

The determination of the sample size in an experiment with 2 samples.
Using data from Larsson (1975), $\mathrm{n}_{1}=10$ and $\mathrm{n}_{2}=9$ flounders (control and experimental respectively) were exposed during 4 and 9 weeks to $50 \mu \mathrm{~g} C d / 1(C S=7 \%)$. At the end of each experiment the hematocrit \% have been measured. The mean \pm the standard error and the t-test (1.6-7) have been evaluated, obtaining following results:

	Control	$50 \mu \mathrm{~g} / 1$	t_{17}
4 weeks	$21.8 \pm .9$	$18.8 \pm .9$	2.35
9 weeks	$21.1 \pm .8$	$16.5 \pm .8$	4.05
	$n_{1}=10$	$n_{2}=9$	

In the first experiment the significance level of the differences between control and $50 \mu \mathrm{~g} / 1$ means lies between 2 and 5 percent, in the second below 1 percent. If the significance of the difference between 18.8 and 21.8 is retained to be too weak (hence the significance level too high) to decide that a dose of $50 \mu \mathrm{~g} \mathrm{Cd/l}$ produces a real effect on the hematocrit \% in four weeks, a lower significance level and hence a higher number of observations must be chosen. How must we choose n_{2} with $n_{1}=10$, or, alternatively, $n_{1}=n_{2}=m$ if we require a significance level of 1% ?

We start putting in (1.6-8) $t=t_{17(.995)}=2.891$ and obtain $n_{2}=24$. But, in this case, we had $t=t_{32}(.995)=2.75$. Reapplying (1.6-8) we obtain $n_{2}=18$ for which $t_{26}(.995)=2.779$ and $n_{2}=19$. Since the next iteration would lead to a value between 18 and $19, n_{2}=19$ could be assumed as the desired value. For $n_{1}=n_{2}=m$, using (1.6-9) we obtain after 3 iterations $m=14$.

This means that, if a 1% significance level is required, with a given sample size of $n_{1}=10$ the sample size n_{2} should at least be 19 , or both samples should at least have 14 individuals.

2. TESTS FOR BIOLOGICAL POLLUTION RESEARCH

2.1 Introduction

2.1.1 Hypotheses, tests and errors

"The most frequent application of statistics in biological research is to test some scientific hypothesis. Statistical methods are important in biology because results of experiments are usually not clear cut and therefore need statistical tests to support decisions between alternative hypotheses. A statistical test examines a set of sample data and, on the basis of an expected distribution of the data, leads to a decision on whether to accept the hypothesis underlying the expected distribution (null hypothesis) or whether to reject that hypothesis and accept an alternative one" (Sokal and Rohlf, 1969). Hypotheses which are most frequently tested are those about:
(a) Frequencies, e.g. percentages of larvae hatching from eggs or fish being killed in a test;
(b) Location measures, e.g. mean (mode, median) body length;
(c) Measures of variability, e.g. variance or range of survival times, accummulation rates;
(d) Dependence (regression) and interdependence (correlation), e.g. doses (concentration) response relationship and correlated changes of oxygen uptake and activity following exposure to harmful substances, respectively.
(e) Detection of outliers, randomness.

Statistical testing can be done by parametric and non-parametric methods. With the former, hypotheses are stated about values of the parameters in the population density function, with the latter not. Many of the non-parametric methods are further distribution free, what means that not even hypotheses about the form of the density function must be considered. Most distribution free tests can be derived using simple combinatorial formulas, so that each test has its own rationale.

For the parametric testing the rationale is almost the same for all tests and can be summarized as follows: First of all the population parameter θ, like the mean μ or the variance σ^{2}, has to be defined, generally with the density function of the population. We are then concerned with deciding whether some preassigned value θ_{0} is acceptable in the light of the observations ($=$ sample).

We thus have the null hypothesis $H_{0}: \theta=\theta_{0}$.

The alternative hypotheses can be very different. We can have a simple alternative hypothesis, whether the population parameter is θ_{1} instead of θ_{0}, what we write $H_{1}: \theta=\theta_{1}$. Or we can have composite alternative hypotheses, what means that the population parameter is larger or smaller than θ_{0}. In this case we write $H_{1}: \theta>\theta_{0}$ or $H_{1}: \theta<\theta_{0}$. These hypotheses are unilateral, whereas the composite alternative hypothesis that θ is different from θ_{0}, i. $\bar{e} \cdot H_{1}: \theta \neq \theta_{0}$, is bilateral. In this paper we refer only to composite alternative hypotheses.

The probability to refuse the null hypothesis, i.e, to refuse H_{0}, is measured by the confidence level 1- $\alpha\{\alpha$, small, positive value, usually $\alpha=.05$, . 01 or .001). 100α is said to be the significance level of the test, and α the size of the test or the type I error.

In the case of a simple alternative hypothesis the probability to accept H_{0} when it is false, i.e. when the alternative hypothesis is true, is measured by β, the type II error.

The probability $1-\beta$ represents the power of the test to detect a false null hypothesis.
The decision process in statistical inference can be summarized as follows (Conover, 1971):

THE DECISION:

The true situation	$\begin{gathered} \mathrm{H}_{0} \text { is } \\ \text { true } \end{gathered}$	ACCEPT H_{0}	REJECT H_{0}
		Correct decision Probability $=1-\alpha$	$\begin{gathered} \text { Type I error } \\ \text { Probability }=\alpha \\ \text { (level of significance) } \end{gathered}$
	$\begin{aligned} & \mathrm{H}_{0} \text { is } \\ & \text { false } \end{aligned}$	Type II error Probability $=\beta$	Correct decision Probability $=1-\beta$ (power of the test)

To test any hypothesis on the basis of a sample of observations, we must divide the sample space, i.e. all possible sets of observations, into two regions: the acceptance region where H_{0} will be accepted at the given confidence level and the critical region, complementary to the first, where it will be refused. In the case of unilateral hypotheses one critical value divides the acceptance from the critical region, whereas for bilateral or two-tailed hypotheses there are two critical values, an upper and a lower limit.

In Figure 2 we have reported the critical value $z_{\text {. }}$, at the confidence level of $1-\alpha=.95$ to test the unilateral hypothesis whether an observedvalue z can be considered belonging to a normal population with mean μ_{0}, or whether we must suppose that it derives from a normal population with a larger mean value.

Figure 2 Example of a unilateral hypothesis

The hypothesis to be tested is hence $H_{0}: \mu=\mu_{0}$ against the alternative $H_{1}: \mu>\mu_{0}$ If $z<z_{(.95)}$ we accept the null hypothesis H_{0}, otherwise we refuse it.

In Figure 3 we consider the test of the bilateral hypothesis whether an observed value can be considered belonging to a normal population with mean μ_{0}, or whether we must suppose that it derives from a normal population whose mean is different (hence larger or smaller) from μ_{0}. This hypothesis will then be treated as two unilateral hypotheses at sizes of the test $\frac{\alpha}{2}$:
(i) $H_{0}: \mu=\mu_{0}$
; $\quad H_{1}: \mu>\mu_{0}$
(ii)

$$
H_{0}: \mu=\mu_{0}
$$

$$
; \quad H_{1}: \mu<\mu_{0}
$$

For the first, the critical value $z_{\left(1-\frac{\alpha}{2}\right)}$ is obtained and for the second $z_{\left(\frac{\alpha}{2}\right)}$.
Hence the bilateral hypothesis:

$$
H_{0}: \mu=\mu_{0} \quad ; \quad H_{1}: \mu \neq 0
$$

which resumes both unilateral hypotheses will be accepted if the observed z lies within $z_{\left(\frac{\alpha}{2}\right)}$ and $z_{\left(1-\frac{\alpha}{2}\right)}$, hence if $z_{\left(\frac{\alpha}{2}\right)}<z_{\left(1-\frac{\alpha}{2}\right)}$.

Figure 3 Example of a bilateral hypothesis

Since the critical values of bilateral hypotheses coincide with the correspondent unilateral critical values with the half significance level, in the following we will not treat unilateral and bilateral hypotheses separately, since only the significance level has to be adjusted.

We will now describe a number of tests following the order of the 5 points, (a)...(e). Examples and applications can be found in Section 2.7. Some other examples, especially about analysis of variance and regression, are in Section 1.7.

The number of tests described hereafter is obviously limited and cannot pretend to cover all possible hypotheses, but should enable the research worker to find easily the most important tests concerning his experiments.

There are many books about biometrics on a more or less mathematically basis like Rao (1952), Snedecor (1956), Sokal and Rohlf (1969), in which almost all tests are described and the necessary tables with the critical values are reported. Further classical table works are of Fisher and Yates (1963), Pearson and Hartley (1958), Diem (1962) and Stange and Henning (1966).

Because of their repeated use we will always write the standardized normal variate (in unities of the standard deviation) as z :

$$
z=\frac{x-\mu}{\sigma}
$$

Student's t-variate with v degrees of freedom (DF):

$$
t_{\nu}=\frac{x-\mu}{s} \sqrt{n},
$$

the chi-square variate with $\nu D F$ by:

$$
x_{v}^{2}=\frac{(n-1) s^{2}}{\sigma^{2}},
$$

and the variance ratio variate with ν_{1} DF for the variance s_{1}^{2} and $\nu_{2} D F$ for s_{2}^{2} by:

$$
F_{v_{1}, v_{2}}=\frac{s_{1}^{2}}{s_{2}^{2}}
$$

The letter n indicates always the sample size, i.e. the number of all observations.
Critical values of z, t, X^{2} and F and all other tests proposed, at the confidence level of $1-\alpha$, will be indicated by the letter of the test, followed by the subscript within parentheses indicating the confidence level:

$$
z_{(1-\alpha)}, \quad t_{v(1-\alpha)}, \quad \chi_{v(1-\alpha)}^{2}, \quad F_{v_{1}, v_{2}(1-\alpha)} .
$$

Tables of the critical values of z are reported in Table $A-3^{*}$, of t in Table $A-4$, of χ^{2} in Table $A-5$ and of F in Table $A-6$. If the value of a function is searched for an argument (not reported in the table) which is intermediate between two arguments reported in the table, it can be guessed by the method of interpolation. The correct way to find interpolated values of the function is described at the end of the table annex.

[^1]
2.1.2 Confidence intervals and tests

It is known (Chapter 1.3) that any interval which specifies two statistics (estimates) L_{1}, L_{2} such that the probability that a population parameter θ lies within the interval $\left(L_{1}, L_{2}\right)$ is $1-\alpha$, where α is a preassigned positive constant (<1), then the interval $\left(L_{1}, L_{2}\right)$ is said to provide an interval estimate, or confidence interval for the parameter θ at the confidence level $100(1-\alpha) \%$. This is generally indicated by:

$$
\begin{equation*}
P\left[L_{1}<\theta<L_{2}\right]=1-\alpha . \tag{2.1-1}
\end{equation*}
$$

Often the sampling distribution of a function of the population parameter, like a statistical test, $T(\theta)$, is known. Determining two statistics T_{1} and $T_{2}(2.1-1)$ can be transformed to:

$$
\begin{equation*}
P\left[T_{1}<T(\theta)<T_{2}\right]=\int_{T_{1}}^{T_{2}} f(T) d T=1-\alpha . \tag{2.1-2}
\end{equation*}
$$

Solving $T(\theta)$ for θ and adapting T_{1} and T_{2} the confidence limits of θ as functions of T_{1} and T_{2} can be found. Suppose that T has been chosen to test the hypothesis:

$$
H_{0}: \theta=\theta_{0} \quad \text { against } \quad H_{1}: \theta \neq \theta_{0} \text {. }
$$

Then chosing T_{1} and T_{2}, under the null hypothesis, at the $100(1-\alpha)$ confidence level, the $100(1-\alpha)$ confidence interval for $\theta_{0}:\left[L_{1}\left(T_{1}\right), L_{2}\left(T_{2}\right)\right]$ can be obtained. It follows that the values of θ within the confidence interval, $L_{1}\left(T_{1}\right)<\theta<L_{2}\left(T_{2}\right)$ would yielda value of the T-test within the acceptance region $\left(T_{1}, T_{2}\right)$. In other words, if θ lies in its 100 (1- α) confidence interval, test T will not refuse H_{0} at the significance level of α, and viceversa. Also, the comparison of 2 parameters like $H_{0}: \theta_{1}=\theta_{2}$ can be obtained by the use of confidence intervals of both parameters. In fact,
(i) If no point is common to both intervals, H_{0} can be refused at a smaller significance level than α;
(ii) If both parameters lie within the limits of the confidence interval of the other, then H_{0} can be accepted ;
(iii) If the intervals overlap in some way, other than under (ii), then multiplying the interval of the sample of size n_{1}
by:

$$
\frac{1}{2} \sqrt{\frac{n_{1}+n_{2}}{n_{2}}}
$$

and the interval of the sample of size n_{2} by: $\frac{1}{2} \sqrt{\frac{n_{1}+n_{2}}{n_{1}}}$ we can conclude with good approximation that

$$
\frac{1}{2} \sqrt{\frac{n_{1}+n_{2}}{n_{1}}}
$$ no over-lapping leads to the refusal of H_{0}, whilst over-lapping to the acceptance of H_{0}. It may be observed that for $n_{1} \approx n_{2}$ both multipliers reduce to $\sim \frac{1}{\sqrt{2}}$.

It is thus seen that for both tests it is easy to obtain from statistical tests confidence intervals and vice-
versa. Here we shall limit ourselves to hypotheses testing.

2.2 Hypotheses about frequencies

2.2.1 Test whether the frequency π of a character in a population equals π_{0} or it is larger

The hypothesis to be tested is:

$$
\begin{equation*}
H_{0}: \pi=\pi_{0} \quad \text { with the alternative } \quad H_{1}: \pi>\pi_{0} \text {. } \tag{2.2-1}
\end{equation*}
$$

Sometimes H_{0} is put in the more general form $H_{0}: \pi \leqslant \pi_{0}$.
If k observations in a sample of size n have the examined character, whose frequency in the population is hypothesized to be π_{0}, the test statistic is given by: *

$$
\begin{equation*}
F_{v_{1}, v_{2}}=\frac{1-\pi_{0}}{\pi_{0}} \cdot \frac{k}{n-k+1} \quad ; \quad v_{1}=2(n-k+1), \quad v_{2}=2 k . \tag{2.2-2}
\end{equation*}
$$

If the observed F is larger than the tabulated (critical) F, hypothesis (2.2-1) must berejected.

For $\pi_{0} \geqslant \frac{12}{12+n}$ test $(2.2-2)$ can be approximated, putting $p=\frac{k}{n}$, by the
al variate:

$$
\begin{equation*}
z=\frac{p-1 /(2 n)-\pi_{0}}{\sqrt{\pi_{0}\left(1-\pi_{0}\right)}} \sqrt{n} . \tag{2.2-3}
\end{equation*}
$$

H_{0} is rejected if $z \geqslant z_{(1-\alpha)}$. For large n the correction factor $\frac{1}{2 n}$ could be eliminated.

2.2.2 Test whether the frequency π of a character in a population equals π_{0} or it is smaller

The hypothesis to be tested is:

$$
\begin{equation*}
H_{0}: \pi=\pi_{0} \quad \text { with the alternative } \quad H_{1}: \pi<\pi_{0} \tag{2.2-4}
\end{equation*}
$$

The test statistic is now:*

$$
\begin{equation*}
F_{v_{1}, v_{2}}=\frac{\pi_{0}}{1-\pi_{0}} \quad \frac{n-k}{k+1} \quad ; \quad v_{1}=2(k+1), \quad v_{2}=2(n-k) \tag{2.2-5}
\end{equation*}
$$

H_{0} is rejected if $F_{v_{1}, v_{2}} \geqslant F_{v_{1}, v_{2}(1-\alpha)}$.

For $\pi_{0} \leqslant \frac{n}{12+n}$ test $(2.2-5)$ can be approximated analogously to (2.2-3) by:

$$
\begin{equation*}
z=\frac{\pi_{0}-p-1 /(2 n)}{\sqrt{\pi_{0}\left(1-\pi_{0}\right)}} \sqrt{n} . \tag{2.2-6}
\end{equation*}
$$

H_{0} is rejected if $z \geqslant z_{(1-\alpha)}$.

[^2]
2.2.3 Comparison of 2 frequencies: test of independence (both margins fixed)

Suppose we have two samples of sizes n_{1} and $n_{2}, n_{1}+n_{2}=n$, with k_{1} and k_{2} observations which detain the same or different characters. If they refer to the same character, the question is whether the samples belong to the same population. If they refer to different characters, the question is whether the frequencies of the characters in the respective populations are the same. In both cases the hypothesis to be tested can be written as follows:

$$
\begin{equation*}
H_{0}: \pi_{1}=\pi_{2}=\pi \quad \text { against } \quad H_{1}: \pi_{i}: \neq \pi ; \quad i=1,2 \tag{2.2-7}
\end{equation*}
$$

To find the test statistic we build the four-fold table with the margins:

Number of observations with the character

Number of observations without the character

Sums

Sample 1 Sample 2	Sums	
k_{1}	k_{2}	$k_{1}+k_{2}=k$
$n_{1}-k_{1}$	$n_{2}-k_{2}$	$n-k$
n_{1}	n_{2}	n

Now we individuate the smallest entry in the four-fold table, say k_{1}, and compute the probabilities*:

$$
\begin{equation*}
P_{i}=\frac{k!(n-k)!n_{1}!n_{2}!}{i!\left(n_{1}-i\right)!(k-i)!\left(n-n_{1}-k+i\right)!n!} \quad ; \quad i=0 \ldots k_{1} \tag{2.2-8}
\end{equation*}
$$

and add all probabilities to give:

$$
\begin{equation*}
P=\sum_{i=0}^{k_{1}} P_{i} . \tag{2.2-9}
\end{equation*}
$$

This is the exact test of Fisher (1954) and gives directly the type I error. If $P \leqslant \frac{\alpha}{2}, H_{0}$ is rejected. It should be observed that this procedure is only correct if MBller, 1961):

$$
\frac{k_{1}\left(n_{2}-k_{2}\right)}{\left(k_{2}+1\right)\left(n_{1}-k_{1}+1\right)} \leqslant 1
$$

The computations of this test are somewhat long, depending on the size of the sample. When the lowest cell frequency in the table is greater than 10 , the method is quite impractical. When no marginal total is greater than 15, Biometrical tables (Pearson and Hartley, 1958) give directly the probabilities P, and for marginals not greater than 30 we can find them in Diem (1962).

```
k! = 1 < 2 < 3 < .. }\timesk. See Table A-1
```

For values of $n>20$ and no entry of the four-fold table smaller than 5 , or for values of $n>40$ and no empty entry, then $H_{0}(2.2-7)$ can be tested by:

$$
\begin{equation*}
x_{1}^{2}=\frac{\left[k_{1}\left(n_{2}-k_{2}\right)-k_{2}\left(n_{1}-k_{1}\right)\right]^{2} n}{n_{1} \cdot n_{2} \cdot k \cdot(n-k)} . \tag{2.2-10}
\end{equation*}
$$

If $X_{1}^{2} \geqslant X_{1(1-\alpha)}^{2}, H_{0}$ is rejected.

If c 4-fold tables must be tested for independence, then the joint test:

$$
\chi_{c}^{2}=\sum_{j=1}^{c} x_{1, j}^{2}
$$

can be computed, comparing it, like $(2.2-10)$ with $X_{c(1-\alpha)}^{2}$.

Another test statistic to prove H_{0} is based on the arc sin transformation (in radiants):

$$
\begin{equation*}
z=\frac{\left|\arcsin \sqrt{p_{1}}-\operatorname{arc} \sin \sqrt{p_{2}}\right|}{\frac{1}{2} \sqrt{\frac{n_{1}+n_{2}}{n_{1} n_{2}}}} ; p_{1}=\frac{k_{1}}{n_{1}}, \quad p_{2}=\frac{k_{2}}{n_{2}} \tag{2.2-11}
\end{equation*}
$$

If $z \geqslant z_{\left(1-\frac{\alpha}{2}\right)}, H_{0}$ is rejected.
2.2.4 Comparison of c frequencies: test of homogeneity (one margin fixed)

We consider now a population whose elements differ for r (\equiv rows) characters, with frequencies $\pi_{j}, j=1 \ldots r$. Consider c (\equiv columns) samples of size n_{i}., $i=1 \ldots$. . For the i-th sample there are $n_{i j}, \sum_{j} n_{i j}=n_{i}$. , individuals which posses character j. Thus we can build the two-way cross table:

Samples

Samples						
characters	1	\ldots	i	\ldots	c	sums
1	n_{11}	\ldots	$n_{i 1}$	\cdots	$n_{c 1}$	$n_{\cdot 1}$
\vdots	\vdots		\vdots		\vdots	\vdots
j	$n_{1 j}$	\cdots	$n_{i j}$	\cdots	$n_{c j}$	$n_{\bullet j}$
\vdots	\vdots		\vdots		\vdots	\vdots
r	$n_{1 r}$	\cdots	$n_{i r}$	\cdots	$n_{c r}$	$n_{\cdot r}$
sums	n_{1}	\cdots	n_{i}	\cdots	$n_{c \cdot}$	n

The hypothesis to test is:

$$
\begin{equation*}
H_{0}: \pi_{i j}=\pi_{j}, \text { all } i, j \text { against } H_{1}: \pi_{i j} \neq \pi_{j} \text { some } i, j . \tag{2.2-13}
\end{equation*}
$$

If H_{0} is true, the frequencies π_{j} are estimated by $P_{j}=n \cdot j / n$.
The following conditions must be satisfied:

1) No expected value $n_{i} p_{j}=\frac{n_{i} \cdot n_{\cdot j}}{n}$ must be smaller than 1 .
2) Only 20% of the above expected values must be smaller than 5 .

If these conditions are not fulfilled some columns and/or rows of (2.2-12) can be joined so as to meet the conditions.

Then H_{0} can be tested by:

$$
\begin{equation*}
x_{(c-1)(r-1)}^{2}=n\left(\sum \sum \frac{n_{i j}^{2}}{n_{i} \cdot{ }^{n} \cdot j}-1\right) \tag{2.2-14}
\end{equation*}
$$

If $\chi^{2} \geqslant \chi_{(1-\alpha)}^{2}, H_{0}$ is rejected.

This test can also be used to test independence. For a 4 -fold table it reduces to (2.2-10). If the population frequencies would be known or predetermined, H_{0} can be tested by:

$$
\begin{equation*}
x_{c(r-1)}^{2}=\sum \sum \frac{\left(n_{i j}-n_{i} \pi_{j}\right)^{2}}{n_{i} \pi_{j}} \tag{2.2-15}
\end{equation*}
$$

This corresponds to the test of goodness of fit (2.2-18) for the comparison of c observed frequency distributions with one theoretical. Thus if H_{0} can be accepted, the c distributions are independent.

If X^{2} of (2.2-15) is greater than the correspondent $X_{(1-\alpha)}^{2}, H_{0}$ is refused. Hypothesis (2.2-13) can also be tested by Kullback's test (Kullback, ${ }^{(1-\alpha)}$ 1959), which is also known as G-test (Sokal and Rohlf, 1969):

$$
\begin{align*}
G_{(c-1)(r-1)} \simeq & x_{(c-1)(r-1)}^{2} \\
= & 2\left(\sum \sum n_{i j} \ln n_{i j}-\sum n_{i} \cdot \ln n_{i} .\right. \\
& \left.-\sum n_{\cdot j} \ln n_{\cdot j}+n \ln n\right)
\end{align*}
$$

where $1 n$ indicates the natural logarithm $\left(=\log _{\mathrm{e}}\right)$.
If $G \geqslant X_{(1-\alpha)}^{2}, H_{0}$ is rejected. The utility of the G-test lies especially in its application to more ${ }^{1-\alpha}$ complex designs.

The case of mo margins fixed is treated in 2.2.7.

2.2.5 Comparison of an observed with a theoretical distribution: tests of goodness of fit

A discrete or continuous population density function $\psi(x)$ is predesignated $\left(=\psi_{0}(x)\right)$. The total range of variability of x is sub-divided into r classes, so that for each class the frequencies $\pi_{j}, j=1 \cdots r$, can be evaluated. Now a sample of size n is considered, with n_{j} observations for each class, $\Sigma n_{j}=n$. To test the hypothesis,

$$
\begin{equation*}
H_{0}: \psi(x)=\psi_{0}(x) \quad \text { against } \quad H_{1}: \psi(x) \neq \psi_{0}(x) \tag{2.2-17}
\end{equation*}
$$

we must first evaluate the expected frequencies $n \pi_{j}$ and check the following conditions:
(1) If $r=2$ both $n \pi_{1}$ and $n \pi_{2}$ must be greater than 5 ,
(2) If $r>2$ see conditions 1) and 2) of Section 2.2.4

The null hypothesis will be rejected if the goodness of fit test

$$
\begin{equation*}
x_{r-1}^{2}=\sum \frac{\left(n_{j}-n \pi_{j}\right)^{2}}{n \pi_{j}} \geqslant x_{r-1(1-\alpha)}^{2} . \tag{2.2-18}
\end{equation*}
$$

The extension of this test to c distributions is given by (2.2-15).
If the expected frequencies have been obtained through an estimate of m parameters, then the DF of χ^{2} must be reduced by further m.

The same null hypothesis can be tested by the Kolmogoroff-Smirnov test (Kolmogoroff, 1941; Smirnov, 1948) for continuous variates and for samples with more than 5 observations. All we have to do is to write down in a column the cumulated population frequencies: $\Phi\left(x_{1}\right)=\pi_{1}, \Phi\left(x_{2}\right)=\pi_{1}+\pi_{2} \cdots$ and in general $\Phi\left(x_{j}\right)=\sum_{h=1} \pi_{h}$. Correspondingly we evaluate the cumulated relative frequencies of the $h=1$ ordered sample ($x_{1}<x_{2} \cdots<x_{r}$)

$$
F\left(x_{j}\right)=\frac{1}{n} \sum_{h=1}^{j} n_{h}
$$

and write them in a second column. In the third column we write the differences: $D\left(x_{j}\right)=$ $\Phi\left(x_{j}\right)-F\left(x_{j}\right)$ and we select the maximum value of these differences without considering the sign:

$$
\begin{equation*}
D_{n}=\max \left|D\left(x_{j}\right)\right| . \tag{2.2-19}
\end{equation*}
$$

If $D_{n} \geqslant D_{n\left(1-\frac{\alpha}{2}\right)}, H_{0}$ is rejected (Table A-7). Unilateral hypotheses can also be tested. $n{ }_{n\left(1-\frac{\alpha}{2}\right)}$ For large $n \quad J_{n(1-\alpha)}$ can be approximated after Smirnow (1948):

$1-\alpha$.95	.975	.99	.995
$D_{n(1-\alpha)}$	$\frac{1.22}{\sqrt{n+1}}$	$\frac{1.36}{\sqrt{n+1}}$	$\frac{1.52}{\sqrt{n+1}}$	$\frac{1.63}{\sqrt{n+1}}$

For discrete variables the above test procedure can be applied, with the only difference that now the confidence level is not equal to $1-\alpha$ but it is larger.

The Kolmogoroff-Smirnov test can also be generalized to include the alternative hypotheses:

$$
\begin{equation*}
H_{1}: \Phi(x)>\Phi\left(x_{0}\right) \tag{2.2-21}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{1}: \Phi(x)<\Phi\left(x_{0}\right) \tag{2.2-22}
\end{equation*}
$$

In the first case the test variate is the maximum positive difference: $D^{+}\left(x_{j}\right)$; in the second the maximum negative difference in absolute value: $-D^{-}\left(x_{j}\right)$, which can be compared with the critical values D_{n} at the confidence level of $1-\alpha$.

2.2.6 Comparison of an observed with the normal distribution

2.2.6.1 Probit analysis

A widely used method of comparing an observed distribution function", $F\left(x_{j}\right)$, with a normal one, $\Phi\left(x_{j}\right)$, is that of the probit transformation of the observed cumulated frequencies. If the observed values of x_{j} are normally distributed, the resulting probit transformation will be a straight line.

The procedure generally followed (Finney, 1971), given x_{j} and the cumulated frequencies $F\left(x_{j}\right)$, is to transform the latter, recurring to Table A-19, into empirical probits $Y\left(x_{j}\right)$. A straight line is then plotted through the empirical probits, either by eye, or by the usual regression methods, weighting the probits with the weights $w\left[Y\left(x_{j}\right)\right]=w_{j}$, which can be found in Table $A-20$. From the regression line the expected probits $Y^{\prime}\left(x_{j}\right)$ can be guessed. For most purposes, these will be sufficient. For more precise results the expected probits will be corrected to working probits $y\left(x_{j}\right)$ by the transformations:
and

$$
\begin{array}{lll}
y\left(x_{j}\right)=Y_{1}-\left[1-F\left(x_{j}\right)\right] A & \text { for } & Y^{\prime}\left(x_{j}\right) \geqslant 5 \tag{2,2-23}\\
y\left(x_{j}\right)=Y_{0}+F\left(x_{j}\right) A & \text { for } & Y^{\prime}\left(x_{j}\right) \leqslant 5 .
\end{array}
$$

Here Y_{0} and Y_{1} are the minimum working and maximum working probits respectively, and A is the range. Y_{0}, Y_{1} and A can also be found in Table $A-20$. A new weighted regression line (with weights w_{j}) is plotted through the working probits obtaining the new expected probits $Y^{\prime \prime}\left(x_{j}\right)$. If the correspondence between $Y^{\prime \prime}\left(x_{j}\right)$ and the expected probits used in the first cycle, $Y^{\prime}\left(x_{j}\right)$, is not considered to be close enough, computations must be repeated starting from $Y^{\prime \prime}\left(x_{j}\right)$ until the desired degree of correspondence is obtained.

2.2.6.2 Normality tests

Besides the tests previously described in Section 2.2.5 and the tests for outliers in Section 2.6.1, other tests are used to test the hypothesis whether a distribution is consistent with the hypothesis of normality:

$$
\begin{equation*}
H_{0}: \Phi(x)=\text { normal distribution. } \tag{2.2-24}
\end{equation*}
$$

[^3]In the following we describe two methods for testing the above hypothesis:
(i) The tests of skewness and kurtosis. We first evaluate

$$
\begin{equation*}
b_{1}=\frac{\mu_{3}}{\mu_{2}^{3 / 2}}=\frac{\sqrt{n} \sum\left(x_{i}-\bar{x}\right)^{3}}{\left[\sum\left(x_{i}-\bar{x}\right)^{2}\right]^{3 / 2}} \tag{2.2-25}
\end{equation*}
$$

which is known as skewness, then

$$
\begin{equation*}
b_{2}=\frac{\mu_{4}}{\mu_{2}^{2}}=\frac{n \sum\left(x_{i}-\bar{x}\right)^{4}}{\left[\sum\left(x_{i}-\bar{x}\right)^{2}\right]^{2}} \tag{2.2-26}
\end{equation*}
$$

which is known as kurtosis.

The first test, b_{1}, is sensitive to departures from normality in symmetry, hence with the alternative hypothesis $H_{1}: \Phi(x)=$ not normal and skew distribution. The second, b_{2}, is sensitive to departures from normality in the degree of peakedness of the distributions, hence with the alternative hypotheses $H_{1}: \Phi(x)=$ plati- or leptokurtic distributions.

For a normal distribution (symmetric and mesokurtic) we have $b_{1}=0$ and $b_{2}=3$. Positive values of b_{1} indicate a longer right tail, negative a longer left tail of the central maximum of the distribution. Values of b_{2} larger than 3 indicate leptokurtic distributions, with higher peak and over-dispersion; smaller than 3 , but always $>1+b_{1}$, indicate platikurtic and under-dispersion when compared with the normal.

Approximated critical values for $\left|b_{1}\right|$ and b_{2} at the 1% and 5% significance level, have been evaluated by Pearson (1930) and D'Agostino and Pearson (1973) from which we have taken the lines of Figure 5, whereas those of Figure 4 have been evaluated on the base of the sampling variance of b_{1}. The acceptance areas resulting from the combined decision $\left|b_{1}\right| \leqslant b_{1}(\alpha)$ and $b_{2}(\alpha)$ lower limit $\leqslant b_{2} \leqslant b_{2}(\alpha)$ upper limit, lie almost completely within the contours evaluated by Bowman and Shenton (1975), but comprises those of Shenton and Bowman (1977), at least for the example reported by them.

Values of $\left|b_{1}\right|$ and b_{2} falling within the acceptance region, permit thus to accept the null hypothesis (2.2-24) at the given confidence levels.

(ii) Generally more efficient tests, especially for low values of n (Shapiro et al., 1968) are those based on the ordered sequences $x(i)>x(i-1)$ as the W_{n}-test (Shapiro and $W i l k, 1965$) or as the normal plot correlation coefficient r_{n} (Filliben, 1965). The latter is, for small n, poorer than W for shorter tailed and skew alternatives, but marginally better than W for symmetric larger tailed alternatives. Further, the latter has the great advantage that it is completely computer implementable, what means that no coefficients need be stored.

To compute the value of W, given a complete random sample of size n, one first has to compute:

$$
\begin{equation*}
b=a_{1}\left[x_{(n)^{-x}(1)}\right]+a_{2}\left[x_{(n-1)^{-x}(2)}\right]+\cdots \tag{2.2-27}
\end{equation*}
$$

extending the sum for all positive differences within [], where the values of a_{i} are given in Table $A-23$. Then the W-test of hypothesis (2.2-24) is given by:

$$
\begin{equation*}
W_{n}=\frac{b^{2}}{(n-1) s^{2}} \tag{2,2-28}
\end{equation*}
$$

where s^{2} is the sample variance. If $W_{n} \leqslant W_{n}(\alpha)$ (Table $\left.A-24\right), H_{0}$ must be rejected.

To evaluate the normal plot correlation coefficient r_{n}, first the uniform order statistic medians m_{i} can be evaluated (with 3 decimal places) using

$$
m_{i}=\left\{\begin{array}{cl}
1-.5^{1 / n} & i=1 \tag{2.2-29}\\
(i-.3175) /(n+.365) & i=2, \ldots, n-1 \\
.5^{1 / n} & i=n
\end{array}\right.
$$

and finally the normal order statistic medians M_{i}, as computed from $\Phi^{-1}\left(m_{i}\right)$ or the inverse normal function (Table A-3) will be obtained. Hence evaluate the ordinary correlation coefficient:

$$
\begin{equation*}
r_{n}=\frac{\sum x_{(i)} M_{i}}{\sqrt{(n-1) s^{2} \sum M_{i}^{2}}} \tag{2,2-30}
\end{equation*}
$$

with critical values reported in Table $A-25$. If $r_{n} \leqslant r_{n}(\alpha), H_{0}$ (2.2-24) must be rejected.

2.2.7 Comparison of two distributions

Consider a sample of size n_{1} from a population with distribution function $\Phi_{1}(x)$, (Section 2.2.5) and a sample of size n_{2} from a population with distribution function $\Phi_{2}(x)$, where x is a continuous variate. We test the hypothesis whether both samples derive from the same population, or equivalently if both distribution functions are equal:

$$
\begin{equation*}
H_{0}: \Phi_{1}(x)=\Phi_{2}(x)=\Phi(x) . \tag{2.2-31}
\end{equation*}
$$

First we transform the n_{1} and n_{2} observed values in one ranked sequence, i.e. we associate rank 1 to the smallest value of the n_{1} and n_{2} observed, rank 2 to the next and so on. The rank of the highest value is then $n_{1}+n_{2}$. If some values are equal, the mean rank is associated to them. Now we choose the smaller sample, say the first if $n_{1} \leqslant n_{2}$, and evaluate the sum of the ranks R_{1} corresponding to the values of that sample, then compute the Mann-WhitneyWilcoxon tests:

$$
\begin{equation*}
U_{1}=n_{1} n_{2}+\frac{n_{1}\left(n_{1}+1\right)}{2}-R_{1} \quad ; \quad U_{2}=n_{1} n_{2}-U_{1} . \tag{2.2-32}
\end{equation*}
$$

If the alternative hypothesis is $H_{1}: \Phi_{1}(x)>\Phi_{2}(x), H_{0}$ will berejected if $U_{2} \leqslant U_{n_{1}}, n_{2}(1-\alpha)$. If the alternative hypothesis is $H_{1}: \Phi_{1}(x)<\Phi_{2}(x), H_{0}$ will berejected if $U_{1}^{2} \leqslant U_{n_{1}}, n_{2}(1-\alpha)$. If the alternative hypothesis is $H_{1}: \Phi_{1}(x) \neq \Phi_{2}(x), H_{0}$ will berejected if the smaller of U_{1} and U_{2} is smaller than $U_{n_{1}}, n_{2}\left(1-\frac{\alpha}{2}\right)$. Critical values are reported in Table A-8. If n_{1} or $n_{2}>20$, or $n_{1}+n_{2}>40, n_{1}$ we can recur to the normal approximation:

$$
\begin{equation*}
U_{n_{1}, n_{2}(1-\alpha)}=\frac{n_{1} n_{2}}{2}-z_{(1-\alpha)} \sqrt{\frac{n_{1} n_{2}\left(n_{1}+n_{2}+1\right)}{12}} \tag{2.2-33}
\end{equation*}
$$

Another way of testing hypothesis (2.2-31), if $\left|n_{1}-n_{2}\right| \leqslant 5$ and $n=n_{1}+n_{2} \leqslant 50$ is the X-test of Van der Waerden (1971). This consists in transforming the ranks of one of the two samples, say $r_{1} \cdots r_{n_{1}}$ into fractions

$$
\frac{r_{1}}{n+1}, \frac{r_{2}}{n+1}, \cdots, \frac{r_{n_{1}}}{n+1}
$$

If these are considered as the cumulative frequencies of a distribution, $F\left(\frac{r_{j}}{n+1}\right)$, we can transform them into normal variates, $\mathrm{Y}^{-1}\left(\mathrm{X}_{\mathrm{j}}\right)$, by inspection of Table A-3. Then we form Van der Waerden's test:

$$
\begin{equation*}
x_{n}=\left|\sum_{j} y^{-1}\left(x_{j}\right)\right| \tag{2,2-34}
\end{equation*}
$$

If $X_{n} \geqslant X_{n(1-\alpha)}$ (Table $\left.A-21\right)$, the null hypothesis must be rejected. Since the test is symmetric, unilateral hypotheses can also be tested easily.

Still another way is given to test the same hypotheses. This is done dichotomising the values of both samples in the ranked sequence, writing the letter A for all values of the first and B for all values of the second sample, the ranked sequence transforms to a sequence of A and B. A sequence of one or more like elements preceeded and/or followed by unlike elements is called a run. The original sequence of x_{i} is thus transformed into a sequence of r runs. The null hypothesis (2.2-31) that both samples derive from the same population can then be tested by inspection of Table A-9, where the lower and upper limits r_{1}, r_{2}, of the acceptance interval are given at the confidence level of $1-\alpha$. If $r_{1}<r<r_{2}$, H_{0} can be accepted, otherwise rejected.

If one of the two sample sizes is greater than 20 , a normal approximation can be used:

$$
\begin{equation*}
z=\frac{r-\left[2 n_{1} n_{2} /\left(n_{1}+n_{2}\right)-1\right]}{\sqrt{\left[2 n_{1} n_{2}\left(2 n_{1} n_{2}-n_{1}-n_{2}\right)\right] /\left[\left(n_{1}+n_{2}\right)^{2}\left(n_{1}+n_{2}-1\right)\right]}} \tag{2.2-35}
\end{equation*}
$$

which reduces for $n_{1}=n_{2}=c$ to:

$$
\begin{equation*}
z=\frac{r-c-1}{\sqrt{n(n-1) /(2 n-1)}} \tag{2.2-36}
\end{equation*}
$$

If $z_{\left(\frac{\alpha}{2}\right)}<z<z_{\left(1-\frac{\alpha}{2}\right)}$ The null hypothesis can be accepted.

The above hypothesis (2.2-31) can also be tested by the Kolmogoroff-Smirnov test (2.2-19) if the x_{i} classes are the same, with critical values:

$$
\begin{equation*}
\lambda_{(1-\alpha)} \sqrt{\frac{n_{1}+n_{2}}{n_{1} n_{2}}} \tag{2,2-37}
\end{equation*}
$$

with $\lambda_{(1-\alpha)}$ given by Stange and Henning (1966), after Smirnow (1948):

$1-\alpha$.95	.975	.99	.995
$\lambda_{(1-\alpha)}$	1.36	1.48	1.63	1.73

If the two samples are linked, when for one reason or another the observations have been obtained pair-wise, then hypothesis (2.2-31) can be tested by Wilcoxon's pair difference test. In this case obviously $n_{1}=n_{2}$. We first calculate all differences $d_{j}=x_{1}{ }^{-} x_{2 j}$. Suppose the non-null differences are n_{d}, n_{d} should not be much smaller than n. Then we transform the absolute values of the n_{d} differences, $\left|d_{j}\right|$, in a ranked sequence.

Now the ranks of the positive differences are added to give T^{+}and the sum of negatives are added to give $T^{-},\left(T^{+}+T^{-}=\frac{1}{2} n_{d}\left(n_{d}+1\right)\right)$. The null hypothesis will be rejected for:

$$
\begin{array}{lll}
H_{1}: \Phi_{1}(x)>\Phi_{2}(x) & \text { if } & T^{+} \leqslant T_{n_{d}(1-\alpha)} \\
H_{1}: \Phi_{1}(x)<\Phi_{2}(x) & \text { if } & T^{-} \leqslant T_{n_{d}(1-\alpha)} \tag{2.2-38}\\
H_{1}: \Phi_{1}(x) \neq \Phi_{2}(x) & \text { if } & \min \left(T^{+}, T^{-}\right) \leqslant T_{n_{d}\left(1-\frac{\alpha}{2}\right)} .
\end{array}
$$

Critical values for $T_{n(1-\alpha)}$ are reported in Table $A-10$. For $n>25$ we can use the
normal approximation:

$$
\begin{equation*}
T_{n(1-\alpha)}=\frac{n(n+1)}{4}-z_{(1-\alpha)} \sqrt{\frac{1}{24} n(n+1)(2 n+1)} \tag{2,2-39}
\end{equation*}
$$

If the values of both samples appear in dichotomized form A, B (nominal scale), the n linked observations can be classified into a 4-fold table:
sample 1

	A	B
$\sim A$	${ }^{n} A$	${ }^{n} A B$
今్రీ B	$n_{B A}$	$n_{B B}$

Put $n_{B A}+n_{A B}=n_{d}$ and $n_{\text {min }}$ the smaller between $n_{A B}$ and $n_{B A}$. The hypothesis,

$$
\begin{equation*}
H_{0}: \pi_{A B}=\pi_{B A} \tag{2,2-41}
\end{equation*}
$$

i.e. the comparison of two frequencies if no margin is fixed (only n_{d} is fixed), will be rejected if:

$$
\begin{equation*}
n_{\min } \leqslant L_{(\alpha)} \tag{2,2-42}
\end{equation*}
$$

$L(\alpha)$ obtained from the binomial distribution (Table $A-22)$ \%. For large values of $n_{d}(\geqslant 20)$, the normal approximation can be used:

$$
\begin{equation*}
L_{(\alpha)}=\frac{1}{2}\left(n_{d}+z_{\left(\frac{\alpha}{2}\right)} \sqrt{n_{d}}\right) \tag{2,2-43}
\end{equation*}
$$

or easier, the test of Mc Nemar (Conover, 1971) for significance of changes:

$$
\begin{equation*}
x^{2}=\frac{\left(n_{A B}-n_{B A}\right)^{2}}{n_{d}} \tag{2.2-44}
\end{equation*}
$$

For values of $X_{1}^{2} \geqslant X_{1(1-\alpha)}^{2}$, the null hypothesis must be rejected.
If A and B are expressed at least in ordinal scale, the above test is known as the sign test, even if this in its original form considered only the case with $n_{A A}=n_{B B}=0$.

* The fact that tests (2.2-42) and (2.2-43) are based only on the non-matching responses is in some way misleading. In fact the probabilities of hypothesis $H_{0}: \pi_{A B}=\pi_{B A}$ are estimated by:

$$
P_{A B}=\frac{n_{A B}}{n_{d}} \quad \text { and } \quad P_{B A}=\frac{n_{B A}}{n_{d}}
$$

but could also be estimated by:

$$
P_{A B}^{\prime}=\frac{n_{A B}}{n} \text { and } \quad P_{A B}^{\prime}=\frac{n_{B A}}{n}
$$

leading to quite different results. A simple way, though approximated, to consider the difference betweeen n_{d} and n, is to substitute in(2.2-42) $n_{\text {miñ }}$ by:

$$
n_{\min }^{\prime}=\frac{n_{d}}{2}-\left(\frac{n_{d}}{2}-n_{\min }\right) \sqrt{\frac{n_{d}}{n}}
$$

2.2.8 A combination of type I errors

Suppose we have applied some different and independent tests to a situation and obtain different responses for which we evaluate the type I error (P_{i}). Fisher (1954) showed that it is possible to estimate the significance of the type I errors, by computing:

$$
\begin{equation*}
x_{2 m}^{2}=-2 \sum_{i=1}^{m} \ln P_{i} \tag{2.2-45}
\end{equation*}
$$

If $x_{2 m}^{2}<\chi_{2 m(1-\alpha)}^{2}$
then the "mean" type I error of the different tests is larger than α, otherwise it is smaller.
2.3 Hypotheses about location measures
2.3.1 Test whether the mean μ, of an approximately normal population with unknown variance, equals a preassigned value μ_{0}

To test the hypothesis whether a mean equals a preassigned value, or equivalently, whether a sample belongs to a population with that preassigned mean, i.e.

$$
\begin{equation*}
H_{0}: \mu=\mu_{0} \quad \text { against } \quad H_{1}: \mu \neq \mu_{0} \tag{2.3-1}
\end{equation*}
$$

we need a sample of size n and evaluate its mean $\bar{x}=\frac{1}{n} \sum x_{i}$ and variance

$$
s^{2}=\frac{1}{n-1} \sum\left(x_{i}-\bar{x}\right)^{2}=\frac{1}{n-1}\left(\sum x_{i}^{2}-n \bar{x}^{2}\right)
$$

Hypothesis (2.3-1) will be rejected if Student's test

$$
\begin{equation*}
t_{n-1}=\frac{\left|x-\mu_{0}\right|}{s} \sqrt{n} \geqslant t_{n-1\left(1-\frac{\alpha}{2}\right)} \tag{2.3-2}
\end{equation*}
$$

For small samples, $n<20$, the sample standard deviation s can be approximated by the sample range R (i.e. the maximum observed minus the minimum observed value: $R=x_{(n)}^{\left.-x_{(1)}\right)}$. In this case, test (2.3-2) reduces to:

$$
\begin{equation*}
\lambda_{n}=\left|\bar{x}-\mu_{0}\right| / R \tag{2.3-3}
\end{equation*}
$$

with $\lambda_{n(1-\alpha)}$ in Table A-11.

If in (2.3-3) the mean is estimated by the median \tilde{x} of the sample, we have the test:

$$
\begin{equation*}
\lambda_{n}=\frac{\left|\tilde{x}-\mu_{0}\right|}{c_{n} R} \tag{2.3-4}
\end{equation*}
$$

where c_{n} is a correction factor reported in Table A-2.

If the hypothesis of normality cannot be sustained, hypothesis (2.3-1) can be tested by the analogous based on the median:

$$
\begin{equation*}
H_{0}: \tilde{\mu}=\tilde{\mu}_{0} \tag{2.3-5}
\end{equation*}
$$

The observed values must be ordered in a ranked sequence $\times(j) \leqslant x(j+1)$ and hence the above hypothesis can be tested establishing the 95% confidence interval with lower limit

$$
\begin{equation*}
L=x_{(h)} \tag{2.3-6}
\end{equation*}
$$

and upper limit

$$
\begin{equation*}
U=x_{(n-h+1)} . \tag{2.3-7}
\end{equation*}
$$

Values for h at the 95% bilateral confidence level are given in Table A-2 (Sachs, 1970). If $\tilde{\mu}_{0}$ falls outside this interval (L, U) the null hypothesis must be rejected. This test is meaningless for $n \leqslant 8$, whereas for $8<n \leqslant 11$ the confidence interval comprises the whole sample range.

2.3.2 Comparison of two means sampled from approximately

 normal populations with unknown variancesFirst we consider the case of unknown but equal variances. Given two samples of size n_{1} and n_{2} with means \bar{x}_{1}, \bar{x}_{2} and variances s_{1}^{2}, s_{2}^{2}, we reject the hypothesis that the means do not differ significantly, or equivalently that the samples belong to the same population:

$$
H_{0}: \mu_{1}=\mu_{2}=\mu \quad \text { against } \quad H_{1}: \mu_{1} \neq \mu_{2}
$$

(2.3-8)
if,

$$
\begin{equation*}
t_{n_{1}+n_{2}-2}=\frac{\left|\bar{x}_{1}-\bar{x}_{2}\right|}{s} \sqrt{\frac{n_{1} n_{2}}{n_{1}+n_{2}}} \geqslant t_{n_{1}+n_{2}-2\left(1-\frac{\alpha}{2}\right)} \tag{2.3-9}
\end{equation*}
$$

where,

$$
s=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}=\frac{\sum_{i=1}^{2} \sum_{j=1}^{n_{i}}\left(x_{i j}-\bar{x}_{i}\right)^{2}}{n_{1}+n_{2}-2} .
$$

If the population variances cannot be supposed to be equal, it is still possible to test exactly hypothesis (2.3-8) if both samples are of the same size $\left(n_{1}=n_{2}=r\right)$. Then we reject the null hypothesis if the sample statistic

$$
\begin{equation*}
t_{r-1}=\frac{\left|\bar{x}_{1}-\bar{x}_{2}\right|}{\sqrt{s_{1}^{2}+s_{2}^{2}}} \sqrt{r} \geqslant t_{r-1\left(1-\frac{\alpha}{2}\right)} \tag{2.3-10}
\end{equation*}
$$

If finally neither variances nor sample sizes are equal, the approximated test

$$
\begin{equation*}
t_{n_{1}+n_{2}-2}^{\prime}=\frac{\left|\bar{x}_{1}-\bar{x}_{2}\right|}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}} \tag{2.3-11}
\end{equation*}
$$

can be applied for large n. Precision of this test is increased if the $D F n_{1}+n_{2}-2$ are substituted by:

$$
\begin{equation*}
v=\frac{\left(n_{1}-1\right)\left(n_{2}-1\right)}{d^{2}\left(n_{2}-1\right)+(1-d)^{2}\left(n_{1}-1\right)} \text { with } d=\frac{s_{1}^{2} / n_{1}}{s_{1}^{2} / n_{1}+s_{2}^{2} / n_{2}} . \tag{2.3-12}
\end{equation*}
$$

If $t_{v}^{\prime} \geqslant t_{v,\left(1-\frac{\alpha}{2}\right)}, \quad H_{0}$ is rejected.
If the smallest of n_{1} and n_{2} is not below 5 , the situation of $n_{1} \neq n_{2}$ and $\sigma_{1}^{2} \neq \sigma_{2}^{2}$ can be solved elegantly by the test of Scheffè discussed in Kendall (1961) reducing randomly the number of observations of the larger sample, say n_{2}, to that of the smaller $\left(n_{1}\right)$. Then evaluate

$$
\begin{equation*}
w_{i}=x_{1 i}-\sqrt{\frac{n_{1}}{n_{2}}} x_{2 i} \tag{2.3-13}
\end{equation*}
$$

and their mean \bar{w}. The hypothesis (2.3-8) can then be tested by:

$$
\begin{equation*}
t_{n_{1}-1}=\frac{\bar{x}_{1}-\bar{x}_{2}}{\sqrt{\frac{\sum\left(w_{1}-\bar{w}\right)^{2}}{n_{1}\left(n_{1}-1\right)}}} \quad ; \quad n_{1}<n_{2} \tag{2.3-14}
\end{equation*}
$$

If the observations of the two samples are obtained pair-wise, so that $n_{1}=n_{2}=r$, then hypothesis (2.3-8) can be tested by:

$$
\begin{equation*}
t_{r-1}=\frac{\left|\bar{x}_{1}-\bar{x}_{2}\right|}{\sqrt{\frac{1}{r-1} \sum\left(d_{j}-\bar{d}\right)^{2}}} \sqrt{\Gamma} \tag{2.3-15}
\end{equation*}
$$

where d_{j} are all the r differences $x_{1 j}-x_{2 j}=d_{j},(j=1 \ldots r)$ and $\bar{d}=\frac{1}{r} \sum d_{j}$.

2.3.3 Comparison of the location of two populations with any distribution

Consider two samples of n_{1} and n_{2} observations and transform the $n_{1}+n_{2}$ values in a ranked sequence (Section 2.2.7). Determine the median \tilde{x} of this sequence. Then build the following 4 -fold table:

(2.3-16)

Now tests (2.2-9) and (2.2-10) can be applied.

If hypothesis (2.2-7) is rejected, also the hypothesis that the medians of both populations are equal:

$$
\begin{equation*}
H_{0}: \tilde{\mu}_{1}=\tilde{\mu}_{2} \tag{2.3-17}
\end{equation*}
$$

will berejected and the alternative hypothesis $H_{1}: \tilde{\mu}_{1} \neq \tilde{\mu}_{2}$ accepted. This test is known as the median test.

Further tests which apply to hypothesis (2.3-17) are those based on the distribution functions of the populations, which in fact comprise the hypothesis of equal location measures as the Mann-Whitney-Wilcoxon (2.2-32), the run (2.2-35) and the Kolmogoroff-Smirnov test (2.2-19) with critical values (2.2-37). If the observations are obtained pair-wise, Wilcoxon's pair difference test (2.2-38) or the sign test in its different forms (2.2-42)-$(2.2-44)$ can be used.

2.3.4 Comparison of the means of c samples

The comparison of c means, i.e. whether the means of c samples can be considered equal, is equivalent to test the null hypothesis that the samples belong to only one population, or that the means of the populations from which they derive are equal. Hence the hypothesis to be tested can be written:

$$
\begin{equation*}
H_{0}: \mu_{i}=\mu \text {; all i against } H_{1}: \mu_{i} \neq \mu \text {; some } i \text {. } \tag{2.3-18}
\end{equation*}
$$

The samples are best written in a two-way table like (2.3-19). The hypothesis (2.3-18) will berejected if the population distribution can be assumed to be normal and with equal variances if the test (2.3-20) is larger than the corresponding tabulated value $\mathrm{F}_{\mathrm{C}^{-1}, \mathrm{n}-\mathrm{c}(1-\alpha)}$.

This type of analysis of the means is the well known 1-way analysis of variance. The study of other analysis of variance models is beyond the intention of this introductory notes on statistical tests. We refer to the already quoted books of biometrics and others about analysis of variance and covariance, like Dunn and Clark (1974).

Some models have been treated by the author (Möller, 1976) and in Sections 1.4.1 and 1.4.2.

If the observations are expressed as percentages, two ways can be followed, either transforming the frequencies as are sin, as for (2.2-11), using then the ANOVA methods, or transforming them to $n_{i j} l n n_{i j}$ as for the G-test (2.2-16) and using then the analysis of entropy methods (Garner and McGill, 1956).

If the normality assumption cannot be held, the comparison of c samples can be performed with the test of Kruskal and Wallis (1952, 1953). Therefore we transform the n observations of table (2.3-19) in a ranked sequence from 1 to n, as in Section 2.2.7, and substitute $x_{i j}$ by their corresponding ranks $R_{i j}$. We form at the bottom of table (2.3-19) the sums of the ranks $R_{i}=\sum_{j} R_{i j}$. As a check we must have $\sum R_{i}=\frac{1}{2} n(n+1)$. Hypothesis (2.3-18) is now changed to j the non-parametric hypothesis:
H_{0} : all c samples derive from the same population, against
H_{1} : some of the c samples do not derive from the same population
(2.3-21)
and can be tested by:

$$
\begin{equation*}
x_{c-1}^{2}=\frac{12}{n(n+1)} \sum \frac{R_{i}^{2}}{n_{i}}-3(n+1) \tag{2.3-22}
\end{equation*}
$$

If $X_{c-1}^{2} \geqslant X_{c-1}^{2}(1-\alpha)$ the hypothesis will be rejected.

More complex models are treated by Friedman (1937, 1940), for which we report only the 2-way analysis for which no entries must be missing. In a scheme like (2.3-19) with $n_{i}=r$ the $x_{i j}$ values of each row (or column) are substituted by their ranks from 1 to c, (or from 1 to r) and the sum of the ranks of each column R_{i}. (or row, R_{\cdot}) are calculated. For $c>3$ (or $r>3$) the hypothesis of no influence of the columns (or rows) can be tested by the test of Friedman:

$$
\begin{equation*}
x_{c-1}^{2}=\frac{12}{c r(c+1)} \sum_{i} R_{i}^{2}-3 r(c+1) \tag{2.3-23}
\end{equation*}
$$

If $X_{c-1}^{2} \leqslant \chi_{c-1(1-\alpha)}^{2}$ the hypothesis can be accepted.

2.3.5 Multiple a posteriori comparison

It will be noted that the alternative hypothesis of (2.3-18) namely $H_{i}: \mu_{1} \neq \mu$, has not to be valid for all i but only for some of them. That means, that only one mean can be sufficient to have the null hypothesis rejected. It would be therefore interesting to have some criteria to individuate those means, which increase mostly the numerator of F, i.e. $\Sigma\left(x_{i}-\bar{x}\right)^{2} n_{i}$, the sum of squares, $S S$, between samples. This can be achieved by the following tests. First determine the critical value $F_{c-1, n-c(1-\alpha)}$ then we get from (2.3-20) the critical value for the between SS:

$$
\begin{equation*}
S S_{B_{(1-\alpha)}}=\frac{\sum \sum\left(x_{i j}-\bar{x}_{i}\right)^{2}}{n-c} F_{c-1, n-c(1-\alpha)} . \tag{2.3-24}
\end{equation*}
$$

The ratio $\frac{\sum \sum\left(x_{i j}-x_{i}\right)^{2}}{n-c}=M S_{W}$ is the "within mean squares" $(=$ within SS divided by

$$
\begin{equation*}
\mathrm{SS}_{\mathrm{B}_{(1-\alpha)}}=(\mathrm{c}-1) \cdot \mathrm{MS}_{\mathrm{W}} \cdot \mathrm{~F}_{\mathrm{c}-1, n-\mathrm{c}(1-\alpha)} . \tag{2.3-25}
\end{equation*}
$$

Any sub-set of samples can now be tested computing simply the between SS due to that sub-set and comparing it with $\mathrm{SS}_{\mathrm{B}_{(1-\alpha)}}$. If it is larger than $\mathrm{SS}_{\mathrm{B}_{(1-\alpha)}}$ the sub-set cannot be considered to derive from the $(1-\alpha)$ same population. This is $(1-\alpha)$ the SS simultaneous test procedure of Gabriel (1964).

Another way of carrying out a posteriori tests, if all $n_{i}=$ constant $=r$, is to use the largest difference found among a set of means (their range) in place of their SS. This sample range is then compared with the least significant range, or Tukey's multiple comparison test:

$$
\begin{equation*}
\operatorname{LSR}_{(1-\alpha)}=Q_{c, n-c(1-\alpha)} \sqrt{\frac{M S_{w}}{r}} \tag{2.3-26}
\end{equation*}
$$

where $Q_{k, v}$ is the studentized range, for which critical values are reported in Table $A-12$.

It may be noticed that for $c=2$,

$$
Q_{2, n-2}=\sqrt{2 t_{n-2}} .
$$

(2.3-27)

If we wish to compare a pair of means that do not have the same sample size, LSR must be modified by replacing in (2.3-26) r by $\frac{2 n_{1} n_{2}}{n_{1}+n_{2}}$, which is an average of the two sample sizes. For testing three or more means, $\Pi_{1}+n_{2}$ this test is no longer exact.

In both methods, the SS simultaneous test procedure (2.3-25) and the least significant range (2.3-26), the type I error is clearly smaller than α. So these tests are on the "safe decision side". A step-wise method to bring the type I error closer to α is the Student-Newman-Keuls procedure. The sample means are written in increasing (or decreasing) order $\left(\bar{x}_{(1)} \leqslant \bar{x}_{(2)} \leqslant \ldots \leqslant \bar{x}_{(c)}\right)$ in the head column and row of a two-fold table (2.3-28) with the number of observations. If the order is increasing, we compute the differences row mean-column mean, and report them in the lower part of the table:

means	number of observations	$\begin{aligned} & \bar{x}_{(1)} \\ & n_{1} \\ & \hline \end{aligned}$	$\begin{aligned} & \bar{x}_{(2)} \\ & n_{2} \end{aligned}$	$\begin{aligned} & \bar{x}_{(3)} \\ & n_{3} \\ & \hline \end{aligned}$	$\begin{array}{ll} \ldots & \bar{x}_{(c)} \\ \cdots & n_{c} \\ \hline \end{array}$
$\bar{x}_{(1)}$	n_{1}	0			
$\bar{x}_{(2)}$	n_{2}	$\bar{x}_{(2)}-\bar{x}_{(1)}$	0		
$\bar{x}_{(3)}$	n_{3}	$\bar{x}_{(3)}{ }^{-\bar{x}_{(1)}}$	$\bar{x}_{(3)}-\bar{x}_{(2)}$	0	
:	:	:	:	:	
$\overline{\text { x }}$ (c)	n_{c}	$\bar{x}_{(c)} \overline{-}^{(1)}$	$\bar{x}_{(c)}{ }^{-\bar{x}_{(2)}}$	$\bar{x}_{(c)}{ }^{-\bar{x}_{(3)}}$	$\cdots 0$

A difference $x(i)^{-x}(g)$ in the above table to be significant must be equal to or greater than:

$$
\begin{equation*}
\operatorname{LSR}_{(1-\alpha)}=Q_{k, v(1-\alpha)} \sqrt{M S_{w}} \sqrt{\frac{n_{i}+n_{g}}{2 n_{i} n_{g}}}, \tag{2.3-29}
\end{equation*}
$$

with $k=1+(i-g)$ and $v=n-c$.
Other ways of finding classes (clusters) of similar means are obtained by dendrograms (Möller, 1973) $\%$.

* see also Figure 8 of example 2.7.2.5.

2.4 Hypotheses about variances

The sample variance is given by $s^{2}=\frac{1}{n-1}\left[\left(x_{i}-\bar{x}\right)^{2}\right.$ and can be approximated for small $n(\leqslant 20)$ by the sample range R (maximum observation - minimum observation): $s=R / d_{n}$, with d_{n} in Table A-2.
2.4.1 Test whether the variance σ^{2} of an approximately normal population equals a preassigned value σ_{0}^{2}

The hypothesis whether the population variance σ^{2} can be assumed to be σ_{0}^{2} is equivalent to the hypothesis whether a sample with variance s^{2} has been extracted from a population with variance σ_{0}^{2}. To test the null hypothesis, ignoring the population mean,

$$
\begin{equation*}
H_{0}: \sigma^{2}=\sigma_{0}^{2} \quad \text { against } \quad H_{1}: \sigma^{2} \neq \sigma_{0}^{2} \tag{2.4-1}
\end{equation*}
$$

we evaluate,

$$
\begin{equation*}
x_{n-1}^{2}=\frac{(n-1) s^{2}}{\sigma_{0}^{2}} \tag{2.4-2}
\end{equation*}
$$

The null hypothesis will be rejected if,

$$
\begin{equation*}
x_{n-1}^{2} \leqslant x_{n-1\left(\frac{\alpha}{2}\right)}^{2} \quad \text { or } \quad x_{n-1}^{2} \geqslant x_{n-1\left(1-\frac{\alpha}{2}\right)}^{2} . \tag{2.4-3}
\end{equation*}
$$

The same hypothesis can be tested if s is approximated by R with the test statistic,

$$
\begin{equation*}
z=g_{n}\left|\frac{R}{d_{n} \sigma_{0}}-1\right| \tag{2.4-4}
\end{equation*}
$$

with d_{n} and g_{n} in Table $A-2$.

$$
\text { Hypothesis } H_{0} \text { is rejected if } z \geqslant z_{\left(1-\frac{\alpha}{2}\right)} \text {. }
$$

2.4.2 Comparison of two variances of approximately normal populations

We will test the hypothesis whether two population variances σ_{1}^{2} and σ_{2}^{2} are equal, or equivalently (if the means μ_{1} and μ_{2} are equal) whether the two samples derive from the same population, i.e.

$$
\begin{equation*}
H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2}=\sigma^{2} \quad \text { against } \quad H_{1}: \quad \sigma_{1}^{2} \neq \sigma_{2}^{2} . \tag{2.4-5}
\end{equation*}
$$

The test statistic is Fisher's sample variance ratio:

$$
\begin{equation*}
F_{n_{1}-1, n_{2}-1} \quad=\frac{s_{1}^{2}}{s_{2}^{2}} \quad ; \quad s_{1}^{2} \geqslant s_{2}^{2} \tag{2.4-6}
\end{equation*}
$$

If $F \geqslant F_{(1-\alpha)}$ the null hypothesis is rejected.

For large samples $\left(n_{i} \geqslant 100\right)$ hypothesis $(2.4-5)$ can be tested by:

$$
\begin{equation*}
z=\frac{\left|s_{1}-s_{2}\right|}{\sqrt{s_{1}^{2} n_{2}+s_{2}^{2} n_{1}}} \sqrt{2 n_{1} n_{2}} . \tag{2.4-7}
\end{equation*}
$$

If $z \geqslant z_{\left(1-\frac{\alpha}{2}\right)}$ the null hypothesis is rejected.

2.4.3 Comparison of c variances of approximately normal populations:

tests of homoscedasticity

To test the hypothesis whether c variances can be considered equal,

$$
\begin{equation*}
H_{0}: \sigma_{i}^{2}=\sigma^{2} \quad ; \quad i=1,2, \ldots, c \text {. } \tag{2.4-8}
\end{equation*}
$$

against the alternative hypothesis,

$$
\begin{equation*}
H_{0}: \sigma_{i}^{2} \neq \sigma^{2} \quad ; \quad \text { some } i \tag{2.4-9}
\end{equation*}
$$

we consider c samples and order them like (2.3-19), then we evaluate the sample variances s_{i}^{2} and the pooled variance

$$
s^{2}=\frac{\sum\left(n_{i}-1\right) s_{i}^{2}}{n-c}=\frac{\Sigma \Sigma\left(x_{i j}-\ddot{x}_{i}\right)^{2}}{n-c} .
$$

Hypothesis (2.4-8) can be tested by Bartlett's test (which is rather sensitive if the normality condition is not fulfilled):

$$
\begin{align*}
\chi_{c-1}^{2} & =-\frac{1}{k} \sum_{i=1}^{c}\left(n_{i}-1\right) \ln \frac{s_{i}^{2}}{s^{2}} \\
& =\frac{2.3026}{k}\left[(n-c) \log s^{2}-\sum\left(n_{i}-1\right) \log s_{i}^{2}\right] \tag{2.4-10}
\end{align*}
$$

with

$$
k=1+\frac{1}{3(c-1)}\left(\sum \frac{1}{n_{i}-1}-\frac{1}{n-c}\right) .
$$

If $X_{c-1}^{2} \geqslant X_{c-1(1-\alpha)}^{2} \quad H_{0}$ is rejected.

Much easier tests, if all samples have the same size $n_{i}=r$ (alli) are Hartley's $F_{\max }$ test and Cochran's g-test (Cochran, 1941). To obtain $F_{\text {max }}$ we simply divide the maximum observed variance $s^{2}(c)$ by the minimum observed variance $s_{(1)}^{2}$ so as to get:

$$
\begin{gather*}
F_{\max , c, r-1}=\frac{s_{(c)}^{2}}{s_{(1)}^{2}} . \tag{2.4-11}\\
\text { If } F_{\text {max }} \geqslant F_{\max (1-\alpha)}(\text { Table } A-13) \text {, hypothesis }(2.4-8) \text { must be rejected. }
\end{gather*}
$$

To obtain Cochran's $g_{c, r}$-test we divide the maximum sample variance by the sum of all observed variances, hence obtaining:

$$
\begin{equation*}
g_{c, r}=\frac{s_{(c)}^{2}}{\sum_{i=1}^{c} s_{i}^{2}} \tag{2.4-12}
\end{equation*}
$$

If $g_{C, r} \geqslant g_{C, r}(1-\alpha)$, nomogram byStange and Henning (1966) reported in Figure 6 , the null hypothesis must be rejected.

Figure 6 Critical values of Cochran's $g_{c, r(1-\alpha)}$ with confidence levels of 1- $\alpha=.95$ and $1-\alpha=.99$
(from Stange and Henning, 1966, with kind permission of Springer Verlag, Berlin

2.4.4 Comparison of c variances of any distribution

A final test proposed by Scheffé (1959) consists in dividing randomly all samples in at least two sub-samples of any size $(\geqslant 2)$, say in q_{i} sub-samples with $n_{i j}$ observations each, $\sum_{j=1}^{q_{i}} n_{i j}=n_{i}$. For each sub-sample, evaluate the variance $s_{i j}^{2}$ and its normalizing transformation,

$$
\begin{equation*}
z_{i j}=\frac{n_{i j}-1}{\sqrt{n_{i j}}} \log s_{i j}^{2} \tag{2.4-13}
\end{equation*}
$$

If $n_{i j}=m=$ constant, it is sufficient to put $z_{i j}=\log s_{i j}^{2}$. Now we evaluate
test

$$
\begin{equation*}
F_{c-1, \sum q_{i}^{-c}}=\frac{\sum q_{i}\left(\bar{z}_{i}-\bar{z}\right)^{2}}{\sum \sum\left(z_{i j}-\bar{z}_{i}\right)^{2}} \cdot \frac{\sum q_{i}-c}{c-1} \tag{2.4-14}
\end{equation*}
$$

which is the same test of a one-way analysis of variance (2.3-20).
If $F \geqslant F_{(1-\alpha)}$ hypothesis (2.4-13) must be rejected.
2.5 Hypotheses about the interdependence (correlation) and the dependence (regression) in bivariate variables

A bivariate distribution (x, y) can be characterized by five parameters $\mu_{x}, \mu_{y}, \sigma_{x}, \sigma_{y}$ and the covariance $\sigma_{x y}$ or the correlation coefficient

$$
\rho=\frac{\sigma_{x y}}{\sigma_{x} \sigma_{y}}
$$

In this section we describe some tests dealing with hypotheses about the linear correlation coefficient ρ. The covariance $\sigma_{x y}$ is estimated through a sample of size $n(=n$ pairs of observations x_{i} and y_{i}) by $s_{x y}=\frac{1}{n-1} \sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)$ and the correlation coefficient by:

$$
r=\frac{s_{x y}}{s_{x}{ }^{s} y}=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum\left(x_{i}-\bar{x}\right)^{2}\left(y_{i}-\bar{y}\right)^{2}}} .
$$

2.5.1 Test of no correlation in a bivariate normal population

To test the hypothesis

$$
\begin{equation*}
H_{0}: \rho=0 \quad \text { against } \quad H_{1}: \rho \neq 0 \tag{2.5-1}
\end{equation*}
$$

the test statistic is:

$$
\begin{align*}
& \text { ic is: } \tag{2.5-2}\\
& t_{n-2}=\frac{|r|}{\sqrt{1-r^{2}}} \sqrt{n-2}
\end{align*}
$$

if $t_{n-2} \geqslant t_{n-2\left(1-\frac{\alpha}{2}\right)} \quad H_{0}$ is rejected.
2.5.2 Test whether the correlation coefficient ρ of a bivariate normal population equals a preassigned value ρ_{0}

The size of the sample to test this hypothesis must not be smaller than 25 . The following functions must then be evaluated:

$$
\begin{equation*}
\zeta(r)=\frac{1}{2} \ln \frac{1+r}{1-r} \quad \text { and } \quad \zeta\left(\rho_{0}\right)=\frac{1}{2} \ln \frac{1+\rho_{0}}{1-\rho_{0}} . \tag{2.5-3}
\end{equation*}
$$

The function ζ is commonly indicated as the z-transformation of r (Fisher, 1954). The hypothesis

$$
\begin{equation*}
H_{0}: \rho=\rho_{0} \quad \text { against } \quad H_{1}: \rho \neq \rho_{0} \tag{2.5-4}
\end{equation*}
$$

can then be tested by the normal variate:

$$
\begin{equation*}
z=\frac{1}{\sqrt{n-3}}\left[\zeta(r)-\zeta\left(\rho_{0}\right)\right] \tag{2.5-5}
\end{equation*}
$$

If $z \geqslant z_{\left(1-\frac{\alpha}{2}\right)}$, the null hypothesis must be rejected.

2.5.3 Comparison of two correlation coefficients of bivariate normal populations

The comparison of two correlation coefficients leads to the hypothesis:

$$
\begin{equation*}
H_{0}: \rho_{1}=\rho_{2} \quad \text { against } \quad H_{1}: \rho_{1} \neq \rho_{2} \text {. } \tag{2.5-6}
\end{equation*}
$$

If the sample sizes are not smaller than 25 , using transformation (2.5-3), the null hypothesis can be tested by:

$$
\begin{equation*}
z=\frac{\left|\zeta\left(r_{1}\right)-\zeta\left(r_{2}\right)\right|}{\sqrt{\frac{1}{n_{1}-3}+\frac{1}{n_{2}-3}}} \tag{2.5-7}
\end{equation*}
$$

where r_{1} and r_{2} are the correlation coefficients of two samples of size n_{1} and n_{2}.

If $z \geqslant z_{\left(1-\frac{\alpha}{2}\right)}$, the null hypothesis must be rejected.
If $n \leqslant 25$, the distribution of r can be inspected in the tables of David (1954).

2.5.4 Tests of no correlation in bivariate populations with any distribution

When the hypothesis of a normal distribution cannot be assumed, other ways of testing the independence are given by Spearman's and Kendall's rank correlation coefficients. For both the null hypothesis can be written:
H_{0} : no interdependence (dependence) between x and y
against
$H_{1}: x$ and y are dependent.

Given a bivariate sample (x, y) of size n, we order the x_{i} values in an ordered sequence of ranks $R_{x_{i}}$ (from 1 to n) and so the y_{i} values to give $R_{y_{i}}$.

If $x_{i} \neq x_{j}$ and $y_{i} \neq y_{j}$ for all $i \neq j$, it follows that $R_{x_{i}} \neq R_{x_{j}}$ and $R_{y_{i}} \neq R_{y_{j}}$.
Spearman's rank correlation coefficient is given by:

$$
\begin{equation*}
r_{s}=1-\frac{6 \sum\left(R_{x_{i}}-R_{y_{i}}\right)^{2}}{n\left(n^{2}-1\right)} \tag{2.5-9}
\end{equation*}
$$

and hypothesis (2.5-8) can be tested for $n \geqslant 20$ by:

$$
\begin{equation*}
z=\left|r_{s}\right| \sqrt{n-1} \tag{2.5.10}
\end{equation*}
$$

For $10 \leqslant n \leqslant 20$, we have:

$$
\begin{equation*}
t_{n-2}=\frac{\left|r_{s}\right|}{\sqrt{1-r_{s}^{2}}} \sqrt{n-2} \tag{2.5-11}
\end{equation*}
$$

If $z \geqslant z_{\left(1-\frac{\alpha}{2}\right)}$ or $t_{n-2} \geqslant t_{n-2,\left(1-\frac{\alpha}{2}\right)}$, hypothesis (2.5-8) must be rejected.

For $4<n<10$, exact critical values are reported in Table A-14.

To obtain Kendall's correlation coefficient τ, we define the new variables:

$$
\xi_{i j}=\left\{\begin{array}{rl}
1 & \text { if } R_{x_{j}}-R_{x_{i}}>0 \tag{2.5-12}\\
-1 & \text { if } R_{x_{j}}-R_{x_{i}}<0
\end{array} \quad ; j>i\right.
$$

and

$$
\eta_{i j}=\left\{\begin{array}{rl}
1 & \text { if } R_{y_{j}}-R_{y_{i}}>0 \\
-1 & \text { if } R_{y_{j}}-R_{y_{i}}<0
\end{array} \quad ; \quad j>i .\right.
$$

Then Kendall's τ is defined by:

$$
\begin{equation*}
\tau=\frac{2 \sum_{j>i} \xi_{i j} n_{i j}}{n(n-1)} \tag{2.5-13}
\end{equation*}
$$

To evaluate the sum,

$$
\sum_{j>i} \xi_{i j} \eta_{i j}
$$

it is convenient to write the ranks $R_{x_{i}}$ in increasing order and the corresponding $R_{y_{i}}$ ranks below them, obtaining the sequencies:

$$
\left.\begin{array}{llllllll}
\text { ranks of } x & : & 1 & 2 & 3 & \cdots & R_{x_{i}} & \cdots
\end{array}\right] n .
$$ Now we count the number of all ranks $R_{y}(j)$ on the right side of $R_{y}(i)$ which are larger

than $R_{y}(i)$ obtaining a number which we will ${ }^{\text {is }}$ indicate by S_{i}. Then the total sum of all
terms

$$
S=\sum_{i=1}^{n-1} S_{i}, \quad\left(S_{n}=0\right), \quad \text { and } \quad \sum_{j>i} \xi_{i j} n_{i j}=2 s-\frac{1}{2} n(n-1)
$$

so that (2.5-13) transforms to:

$$
\begin{equation*}
\tau=\frac{4 S}{n(n-1)}-1 . \tag{2.5-14}
\end{equation*}
$$

Hypothesis (2.5-8) must be rejected for $n>10$, if:

$$
\begin{equation*}
z=\frac{|\tau|}{\sqrt{2(2 n+5)}} \sqrt{3 n(n-1)} \geqslant z_{\left(1-\frac{\alpha}{2}\right)} . \tag{2.5-15}
\end{equation*}
$$

For $n \leqslant 10$, exact critical values for τ are reported in Table $A-14$.

If the condition $x_{i} \neq x_{j}$ and/or $y_{i} \neq y_{j}$ for all $i \neq j$ is not fulfilled, but instead same x values are repeated t_{x} times, we associate to x_{i} the mean rank. Correspondingly we associate to y values repeated t_{y} times the mean rank. Then we form:

$$
\begin{equation*}
T_{x}=\frac{1}{2} \sum_{t_{x}} t_{x}\left(t_{x}^{2}-1\right) \quad \text { and } \quad T_{y}=\frac{1}{2} \sum_{t_{y}} t_{y}\left(t_{y}^{2}-1\right) \tag{2.5-16}
\end{equation*}
$$

and get Spearman's rank correlation test corrected for ties,

$$
\begin{equation*}
r_{s}=1-\frac{6 \sum\left(R_{x_{i}}-R_{y_{i}}\right)^{2}}{n\left(n^{2}-1\right)-\left(T_{x}+T_{y}\right)} . \tag{2.5-17}
\end{equation*}
$$

Hypothesis (2.5-8) must be rejected for $n \geqslant 20$ and with the entity of ties small with respect to n, if:

$$
\begin{equation*}
z=\left|r_{s}\right| \sqrt{n-1} \geqslant z_{\left(1-\frac{\alpha}{2}\right)} \tag{2.5-18}
\end{equation*}
$$

In the same manner it is possible to obtain Kendall's rank correlation test corrected for ties putting $w_{x}=\sum_{t_{x}} t_{x}\left(t_{x}-1\right)$ and $w_{y}=\sum_{t_{y}} t_{y} \overline{\left(t_{y}-1\right)}$:

$$
\begin{equation*}
\tau=\frac{2 \sum_{j>i} \xi_{i j} n_{i j}}{\sqrt{n(n-1)-w_{x}} \sqrt{n(n-1)-w_{y}}} \tag{2.5-19}
\end{equation*}
$$

in which $\xi_{i j}$ and $\eta_{i j}$ are defined as (2.5-12) including the zero.

Hypothesis (2.5-8) must be rejected for $n>10$ if (2.5-15) is true.
2.5.5 Hypotheses about regression coefficients of normal bivariate populations

A regression line is defined by $y=\alpha+\beta x$. As for the correlation we can now prove easily the following hypotheses:

$$
\begin{array}{lll}
H_{0}: \beta=0 & \text { against } & H_{1}: \beta \neq 0 \\
H_{0}: \beta=\beta_{0} & \text { against } & H_{1}: \beta \neq \beta_{0} \\
H_{0}: \beta_{1}=\beta_{2} & \text { against } & H_{1}: \beta \neq \beta_{2} \tag{2.5-22}
\end{array}
$$

First we define the following sample functions:
(i) The estimation of the regression coefficient β :

$$
b=\frac{s^{s} x y}{s_{x}^{2}}
$$

(ii) The residual variance:

$$
S_{R}^{2}=\frac{n-1}{n-2}\left(s_{y}^{2}-b^{2} s_{x}^{2}\right)=\frac{n-1}{n-2} s_{y}^{2}\left(1-r^{2}\right)
$$

Hence we reject hypothesis (2.5-20) if the test statistic,

$$
\begin{equation*}
t_{n-2}=\frac{|b|}{s_{R}} \sqrt{(n-1) s_{x}^{2}} \geqslant t_{n-2,\left(1-\frac{\alpha}{2}\right)} . \tag{2.5-23}
\end{equation*}
$$

Hypothesis (2.5-21) will be rejected if

$$
\begin{equation*}
t_{n-2}=\frac{\left|b-\beta_{0}\right|}{s_{R}} \sqrt{(n-1) s_{x}^{2}} \geqslant t_{n-2,\left(1-\frac{\alpha}{2}\right)} \tag{2.5-24}
\end{equation*}
$$

and hypothesis (2.5-22) if

$$
t_{n_{1}+n_{2}-4}=\frac{\left|b_{1}-b_{2}\right|}{S_{R} \sqrt{\frac{1}{\left(n_{1}-1\right) s_{x_{1}}^{2}}+\frac{1}{\left(n_{2}-1\right) s_{x_{2}}^{2}}}} \geqslant t_{n_{1}+n_{2}-4,\left(1-\frac{\alpha}{2}\right)} \cdot(2.5-25)
$$

For further tests about regression lines we refer to Section 1.5 and Mษller (1976) or any books dealing with analysis of covariance, like Searle (1971), Dunn and Clark (1974), besides the already quoted books about biometrics.

2.6 Other tests

2.6.1 Tests for outliers

Observations that differ very much from the rest of the numerical values are usually called outliers. To obtain tests to detect outliers in a sample from a normal population, the sample observations are first ordered from smallest to largest. Let $X_{(1)}$ be the smallest value and $x_{(n)}$ the largest. The hypothesis,

$$
\begin{equation*}
H_{0}: x_{(1)} \text { is not an outlier } \tag{2.6-1}
\end{equation*}
$$

against

$$
\begin{aligned}
&\left.H_{1}: x_{(1)}\right) \text { is an outlier } \\
&(\equiv \text { the distribution of the population is not normal) }
\end{aligned}
$$

can be tested by Dixon's test,

$$
\begin{equation*}
r_{n}=\frac{x_{(2)}-x_{(1)}}{x_{(n)}-x_{(1)}} . \tag{2.6-2}
\end{equation*}
$$

Analogously, the hypothesis

$$
\begin{equation*}
H_{0}: x_{(n)} \text { is not an outlier } \tag{2.6-3}
\end{equation*}
$$

against

$$
H_{1}: x_{(n)} \text { is an outlier }
$$

can be tested by:

$$
\begin{equation*}
r_{n}=\frac{x_{(n)}-x_{(n-1)}}{x_{(n)}-x_{(1)}} . \tag{2.6-4}
\end{equation*}
$$

```
If \(r_{n} \geqslant r_{n(1-\alpha)}, \begin{aligned} & \text { hypotheses }(2.6-1) \text { or }(2.6-3) \text { must be rejected. The critical } r_{n} \\ & \text { are reported in Table } A-15 .\end{aligned}\)
```

Another test for outliers based on the same assumption of normality is Grubbs' test. If the largest value is suspected we calculate the test statistic:

$$
\begin{equation*}
T_{n}=\frac{x_{(n)}-\bar{x}}{s} \tag{2.6-5}
\end{equation*}
$$

Hypothesis $H_{0}(2.6-3)$ is rejected, i.e. $\times(\pi)$ is to be considered an outlier, if $T_{n} \geqslant T_{n(1-\alpha)}$. Critical values are given in Table A-16.

For $n \geqslant 20$, a suitable test is given by the ratio

$$
\begin{equation*}
Z_{n}=R / S . \tag{2.6-6}
\end{equation*}
$$

Critical values $Z_{n\left(\frac{\alpha}{2}\right)}$ and $Z_{n\left(1-\frac{\alpha}{2}\right)}$ which delimit the acceptance region can be
in Table $A-17$.

If $Z_{n\left(\frac{\alpha}{2}\right)}<Z_{n}<Z_{n\left(1-\frac{\alpha}{2}\right)}$, neither $x_{(1)}$ nor $x_{(n)}$ must be considered outliers.

If $Z_{n}\left\{\begin{array}{l}\leqslant Z_{n\left(\frac{\alpha}{2}\right)} \\ \geqslant Z_{n\left(1-\frac{\alpha}{2}\right)}\end{array}\right.$,
$x_{(1)}$ must be considered an outlier if $\bar{x}-x_{(1)} \geqslant x_{(n)}-\bar{x}$
or
$x_{(n)}$ must be considered an outlier if $x_{(n)}-\bar{x} \geqslant \bar{x}-x_{(1)}$.

Once eliminated an outlier, the same procedure can be applied to the remaining data, clearly with modified confidence level.

2.6.2 Tests for randomness

Consider a sample from a normal population of n observations obtained in any order (e.g. time series). To test whether events occur in a random sequence or whether the probability of a given event is a function of the outcome of a previous event, we can use Neumann's mean square successive difference test (Neumann, 1941):

$$
\begin{equation*}
n_{n}^{2}=\frac{\sum\left(x_{i+1}-x_{i}\right)^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}} . \tag{2.6-7}
\end{equation*}
$$

The alternative hypothesis can be of two kinds:
(i) The sequence is not at random because of short-term critical influences. In this case the hypothesis of randomness is rejected if $\eta_{n}^{2} \geqslant \eta_{n(1-\alpha)}^{2}$.
(ii) The sequence is not at random because of long-term influences (trend). In this case the hypothesis of randomness is rejected if $\eta_{n}^{2} \leqslant \eta_{n(\alpha)}^{2}$.

The acceptance region delimited by the critical values of $\eta_{n(\alpha)}^{2}-\eta_{n(1-\alpha)}^{2}$ are reported in Table A-18.

Another test about randomness, or more exactly about no correlation between successive terms of a time series, is the circular serial correlation coefficient of lag h :

$$
\begin{equation*}
R_{h, n}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(x_{i+h}-\bar{x}\right)}{(n-1) s^{2}} \tag{2.6-8}
\end{equation*}
$$

where, $x_{i+h}=x_{i+h-n}$ for all terms x_{i+h} for which $i+h>n$.

The hypothesis of no serial correlation can then be accepted at the confidence level of $1-2 \alpha$, if $R_{h, n}$ lies within the acceptance region $R_{h, n(\alpha)}-R_{h, n(1-\alpha)}$ as reported in Table A-18.

The hypothesis of randomness can also be tested by the test for runs up and down (Wald and Wolfowitz, 1940). Herefore the signs of all $n-1$ differences $x_{i}-x_{i-1}$ are recorded so as to give a sequence of only + and - . A sequence of the same sign is defined a run of length equal to the number of equal signs. The original sequence of x_{i} values is thus transformed into a sequence of r runs. The hypothesis of randomness can be tested by the normal approximation which is satisfactory for n as low as 10:

$$
\begin{equation*}
z=\frac{r-(2 n-1) / 3}{\sqrt{(16 n-29) / 90}} . \tag{2.6-9}
\end{equation*}
$$

The null hypothesis of randomness can be accepted if

$$
z_{\left(\frac{\alpha}{2}\right)}<z<z_{\left(1-\frac{\alpha}{2}\right)} .
$$

For a sequence of dichotomized data a test of randomness is the run test (2.2-35).

To test a time series specifically against the presence of a trend, the sign test (2.2-42 to 44), known under this circumstance as the Cox andStuart (1955) test for trend, is applicable. Just group the variables into pairs:

$$
\left(x_{i} ; x_{i+c}\right) \quad i=\left\{\begin{array}{l}
1 \cdots c ; n=\frac{n}{2} ; n \text { even }, \\
1 \cdots(c-1) ; c=\frac{n+1}{2} ; n \text { odd } .
\end{array}\right.
$$

Then evaluate all c or $c-1$ differences $x_{i}-x_{i+c}$ and apply the sign tests (2, 2-42) or (2,2-43).

2.7 Examples

2.7.1 Examples of tests about frequencies

2.7.1.1 Examples of tests about single frequencies

Consider the first sample of MuZlus barbatus of Table V. Is it possible to accept the hypothesis that 50% of the fish have a concentration level of $.1\left(\equiv H_{0}\right)$ or are there significantly more ?

By inspection of the table we get:

$$
\begin{aligned}
& k=7 \quad \text { fish with a concentration higher than } .1 \\
& \frac{n-k}{}=\frac{3}{n}=10
\end{aligned} \quad \text { fish with a concentration lower than } \quad .1
$$

The hypothesis to be tested is $H_{0}: \pi=.5$ against $H_{1}: \pi>.5$, and the appropriate test (2.2-2):

$$
F_{8,14}=\frac{.5}{1-.5} \frac{7}{4}=1.75 \leqslant F_{8,14(.95)}=2.70
$$

Hence, H_{0} can be accepted: The difference between the observed frequency of $\frac{7}{10}=.7$ and the hypothesized value of $\pi=.5$ cannot be considered to be high enough to state that significantly more than 50% of the fish have a concentration level of .1 .

Since $\pi_{0}=.5 \leqslant \frac{12}{22}$ the above test cannot be approximated by (2.2-3).

If we consider only the first concentration levels of all fishes, we get:

$$
\begin{aligned}
k & =44 \\
n-k & =37 \\
\hline n & =81
\end{aligned}
$$

Since

$$
\frac{12}{12+n}=\frac{12}{93}=0.13<\pi=.5
$$

now test (2.2-3) can be used, evaluating

$$
p=\frac{44}{81}=.5432
$$

and hence

$$
z=\frac{.5432-\frac{1}{162}-.5}{\sqrt{.5 \cdot .5}} \sqrt{81}=.67<z_{(.95)}=1.645 .
$$

Again, H can be accepted: As in the previous case, we can conclude that the difference befween $p=.5432$ and $\pi=.5$ cannot be considered to be high enough to state that significantly more than 50% of the fish have a concentration level of . 1 .

2.7.1.2 Example of a comparison of two frequencies by Fisher's exact test

We compare the frequencies as in 2.7.1.1 of samples 1 and 2 of Table V. We have:

k_{1}	$=7$	k_{2}	$=9$			
$n_{1}-k_{1}$	$=3$	$n_{2}-k_{2}$	$=1$			
n_{1}	$=10$	n_{2}	$=10$		k	$=16$
---:	:---					
$n-k$	$=4$					
n	$=20$					

Since n is not too large and in the 4 -fold table figures one very small entry, we use the exact test of Fisher (2.2-9) evaluating:

$$
P_{1}=\frac{16!4!10!10!}{7!9!3!1!20!} \quad ; \quad P_{0}=\frac{16!4!10!10!}{6!10!4!0!20!} .
$$

Recurring to Table $A-1$ we get the logarithms:

$$
\begin{aligned}
\log P_{1} & =(13.3206+1.3802+2 \cdot 6.5598)-(3.7024+5.5598+.7782+18.3861) \\
& =27.8204-28.4265=-.6061 \\
P_{1} & =.248 \\
\log P_{0} & =27.8204-(2.8573+6.5598+1.3802+18.3861) \\
& =-1.363 \\
P_{0} & =.043
\end{aligned}
$$

Hence $P=P_{1}+P_{0}=.248+.043=.291$, which, being larger than $\frac{\alpha}{2}=.025$ permits to accept the hypothesis (2.2-7):

$$
H_{0}: \pi_{1}=\pi_{2} \quad \text { against } \quad H_{1}: \pi_{1} \neq \pi_{2} \text {. }
$$

That means that the observed frequencies of $\frac{7}{10}$ for the first and $\frac{9}{10}$ for the second sample do not differ significantly.

2.7.1.3 Example of a comparison of two frequencies by χ^{2} test and arc sin transformation

Bulnheim (1977) compared the survival rates of Gammamus duebeni descending from inbred and outbred strains. From a number of 47 outbreeding pairs he obtained $n_{1}=6809$ young and $k_{1}=6065$ survived up to the stage of sub-adults. From a number of 33 inbreeding pairs $n_{2}=2638$ young were obtained, of which $k_{2}=2013$ reached the stage of subadulthood. Can the survival rates,

$$
p_{1}=\frac{k_{1}}{n_{1}}=.89 \quad \text { and } \quad p_{2}=\frac{k_{2}}{n_{2}}=.69
$$

be considered equal? That is the null hypothesis to be tested. Hence by (2.2-10), we obtain:

$$
\begin{aligned}
x_{1}^{2} & =\frac{[6065 \cdot 625-2013 \cdot 744]^{2} \cdot 9447}{6809 \cdot 2638 \cdot 8078 \cdot 1369} \\
& =250.04 \gg x_{1(.995)}^{2}=7.879 .
\end{aligned}
$$

Hence the hypothesis of equal survival rates will be rejected.

We could also have used (2.2-11):

$$
z=\frac{|\operatorname{arc} \sin \sqrt{.89}-\operatorname{arc} \sin \sqrt{.69}|}{\frac{1}{2} \sqrt{\frac{9447}{6809 \cdot 2638}}}=\frac{|1.233-.980|}{\frac{1}{2} \sqrt{.000526}}=22
$$

which confirms the above result.

Finally we evaluate (2.2-16) first building the table of n times the normal logarithm of the entries of the four-fold table of the observed frequencies:

Hence $\quad G_{1}=2(52828+4920+15314+4024-72677-9887-60096-20782+86473)=234$ which approximates fairly well the above χ_{1}^{2}.

2.7.1.4 Example of a comparison of four frequency distributions by χ^{2} and G-test

Temperature and salinity choice can be altered following or/and during pesticide exposure (Bayne et al., 1973). The following table gives an example for salinity choice by an euryhaline organism:

Salinities	Concentration uf poison: chosen				
0	$1.0 \mu \mathrm{~g}$	$10 \mu \mathrm{~g}$	$100 \mu \mathrm{~g}$		
0%	60	2	8	10	80
15%	10	28	5	13	56
30%	15	35	39	43	132
	85	65	52	66	268

To test whether with increasing pesticide exposures higher salinities are preferred or not, we can recur to $(2.2-14)$ obtaining $X_{6}^{2}=121.1$ or $(2.2-16)$: $G_{6}=122.06$. Both values are much higher than the critical ${ }^{6}$ value of $\chi_{6(.95)}^{2}=12.592$.

The advantage of the G-test lies in the fact that sub-hypotheses can be easily tested. First, let us consider the logarithmic transformation of the above table which led us to G_{6} :

245.66	1.39	16.64	23.03	350.56
23.03	93.3	8.05	33.34	225.42
40.62	124.44	142.88	161.73	644.53
377.63	271.34	205.46	276.52	1498.38

If we were interested to check if there are any significant differences between the effect due to the three different conceniraiions uf poison, hence eliminating the first column, all we have to do is to evaluate the new marginals of the last column which then becomes:

frequencies	$n_{i} \log n_{i}$
20	59.91
46	176.12
117	557.17
183	953.34

Now $G_{4}=23.2$ which is still above the 5% critical value denoting that the three chosen concentration values determine a different response. With the same method, we obtain instead for the concentration of $10 \mu \mathrm{~g}$ and $100 \mu \mathrm{~g}, \mathrm{G}_{2}=2.44$, which is smaller than the critical value: there is no significant difference in the responses.

2.7.1.5 Example of a goodness-of-fit test

It is a common experience of field biologists that relatively low or medium colonisation densities of a given species are much more frequently encountered than high and extremely high ones. Hence the assumption of a Poisson distribution seems reasonable.

A large random sample was taken (Elliot, 1971) of the number $x_{i}=K$ of maifly nymphs on the tops of stones at night, obtaining the frequencies n_{k}. The mean $10 ~ \therefore \quad 10.125$ and the expected frequencies of the Poisson distribution could thus be determined:

$$
\pi_{K}=\exp (-\bar{x}) \frac{\bar{x}^{K}}{K!} .
$$

To use the χ^{2} test (2.2-18) we first group the extreme classes together to satisfy the condition, so as to have as few as possible classes with expected frequencies lower than 5. The results are indicated in Table $X V$, from which $X^{2}=.62$ is obtained and which, being smaller than 1 , needs no inspection of any table because the correspondence between observed and expected frequencies is almost perfect. The DF of χ^{2} must be lowered by 1 since one parameter, \bar{x}, had to be estimated ($D F=r-1-1=9$).

Hence, the colonization densities of maifly nymphs can be assumed to be distributed like the Poisson density function. Since the fundamental characteristic of the Poisson distribution is to let unchanged $\bar{x}=n \pi$, a very low colonization probability

$$
\pi=\frac{\bar{x}}{n}=\frac{10.125}{80}=.127
$$

follows from the observed data, confirming the idea stated at the beginning of relative low or medium colonization density. Further, it follows that, for increasing n, the probability π tends to diminish.

In the last three columns of Table XV we have reported the cumulated relative observed, $F\left(x_{i}\right)$, and expected, $\phi\left(x_{i}\right)$, frequencies, and the absolute value of their differences $D\left(x_{i}\right)$ to apply the Kolmogoroff-Smirnov test (2.2-19). Hence, $D_{80}=.0224$ which is well below the critical value of $D_{80(.96)}=.167$ confirming the above results.

Table XV
Comparison of an observed with a Poisson distribution

2．7．1．6 Example of a probit transformation to determine $L C_{50}$

To determine the 96 hs ${L C_{50}}$ of Syntopon C for Scolelepis fuliginosa，Stora（1972） fitted by probit transformation a normal distribution to the mortality curve thus obtaining the equation of the expected probit line $y(x)=a+b x$ ．Solving this for $y(x)=5$ ，the $L C_{50}$ is easily obtained．The result of Stora＇s analysis is reported in Table XVI． Empirical probits and working probits have been obtained by（2．2－22）recurring，as for the weights，to Tables $A-19$ and $A-20$ ．

Table XVI
Observed mortality curve and its probit transformation
［from Stora（1972），with kind permission of Station marine d＇Endoume，Marseille］

	$\begin{aligned} & \text { D } \\ & \text { d } \\ & 0 \\ & 4 \\ & 0 \\ & \vdots \\ & 0 \\ & 0 \\ & E \\ & \vdots \end{aligned}$	$\stackrel{4}{c}$00u00.				$y\left(x_{j}\right)$ $\stackrel{00}{\circ} \mathrm{C}$ 㝐 3 台	w_{j} n $\stackrel{3}{5}$ $\stackrel{y}{4}$ 0 3 3	Products			
								$w_{j}{ }^{\text {j }}$ j	$w_{j}{ }^{\text {y }}{ }_{j}$	$w_{j} x_{j}{ }^{\prime}{ }_{j}$	$w_{j} x_{j}^{2}$
9	19	95	0.95424	6.6449	6.48	6.6250	5.5120	5.2597	36.5170	34.8455	5.0190
8	17	85	0.90309	6.0364	6.08	6.0349	8.2280	7.4306	49.6551	44.8429	6.7105
7	13	65	0.84510	5.3853	5.63	5.3671	11.0000	9.2961	59.0381	49.8930	7.8561
6	11	55	0.77815	5.1257	5.10	5.1255	12.6860	9.8716	65.0220	50.5968	7.6815
5	9	45	0.69897	4.8743	4.48	4.9030	11.5260	8.0563	56.5119	39.5000	5.6311
4	2	10	0.60206	3.7184	3.73	3.7195	6.9240	4.1686	25.7538	15.5051	2.5097
Sums ：							55.8760	44.0829	292.4979	235.1833	35.4079
$\bar{x}=\frac{44.0829}{55.876}=.789$							$S_{x}^{2}=\frac{35.4079}{55.876}-.789^{2}=.011166$				
$\bar{y}=\frac{292.4979}{55.876}=5.235$							$S_{x y}=\frac{235.1833}{55.876}-.789 \cdot 5.235=.0786$				
Hence，$b=\frac{.0786}{.011166}=7.04$											
and，$a=5.235-7.04 \cdot .789=-.32$ ，											
so that the expected probit line is defined by $y_{j}=-.32+7.04 \mathrm{X}_{\mathrm{j}}$ ．											

For $y_{j}=5$ we obtain $x_{j}=\log L C_{50}=.75568$ which corresponds to a concentration of $5.7 \mathrm{mg} / \mathrm{l}$ ．

2.7.1.7 Example of normality tests

We consider sample 9 of Table V and specifically the $n=21$ differences between determinations, obtaining (multiplying by 1000):
$2,0,0,-3,-2,0,6,-7,0,-7,-4,-1,0,-4,-2,-1,-9,-5,-4,-1,-4$.

We evaluate the skewness b_{1}, the kurtosis b_{2}, the probit line, W_{n} and r_{n}. The main operations are reported in Table XVII.

Observations:

(i) From the first 4 central moments of the x_{i} values, we have obtained from (2.2-25) and (2.2-26) $b_{1}=.128$ and $b_{2}=3.357$. Both values lie within the acceptance area of Figures 4 and 5 for $n=30$, hence all the more for $n=21$. This means that we can accept the normality hypothesis. $\quad b_{1}>0$ tells us that the frequency distribution has a longer tail to the right of the central maximum, and $\mathrm{b}_{2}>3$ that the curve is leptokurtic.
(ii) To evaluate the probits, one has to first compute the cumulative frequencies by:

$$
\frac{i-.5}{21}=\frac{2 i-1}{42}
$$

with $i=1 \cdots$ 21. From Table $A-19$ the probits $Y\left(x_{i}\right)$ are obtained and reported in Figure 7. It is seen that a straight line fits rather well to the data though it seems that a sigmoid curve fits better, denoting a slight over-dispersion as to the normal (confirming b_{2}), which is more pronounced at the right side (confirming b_{1}).
(iii) For the W_{n}-test (2.2-28) the difference between the largest observed value, $X_{(n)}$, minus the smallest $X_{(1)}$ is formed, then after elimination of these values, the difference between the next largest $x_{(n-1)}$ and the next smallest $X_{(2)}$ is formed, and so on. Correspondingly we obtain the weights a_{i} from Table $A-23$. The sum of the products is obtained, $b=14.7399$, and divided by $(n-1) \mathrm{s}^{2}$. The result is $W_{21}=.9561$. From Table $A-24$ it is seen that the observed value lies well above the critical value of $W_{21}(.05)$, hence permitting to accept the hypothesis of normality.
(iv) In the last two columns of Table XVII are reported the values for determining $r_{n}(2,2-30)$. First determine m_{i} using (2.2-29). Here it is only necessary to evaluate the upper half of the table, since the corresponding normal order statistic medians are equal to the lower part, changing the sign. The M_{i} values corresponding to m_{i} are obtained from Table $A-3$; then the ordinary correlation coefficient between $X_{(i)}$ and M_{i} is evaluated, obtaining $r_{21}=.973$ which, confirming the former results, lies well above the critical value $r_{21(.05)}=.952$, obtained from Table A-25.

Table XVII
Construction of the probit distribution and W_{n} - and r_{n}-tests for normality

Figure 7 Probit analysis of data of Table XVII

2.7.1.8 Example of a comparison of two distributions by the Mann-Whitney U-test and van der Waerden's X-test

Hatfield and Johansen (1972) tested the learning ability of insecticide treated salmon in a shuttle box conditioning apparatus. The fish had to learn to escape from a dark chamber through a door in a lighted one. Light therefore was the conditioned, electric shocks the unconditioned stimuli. The learning ability was measured by the number of trials. Prior to the learning procedure the fish underwent a 24 -hour exposure to DDT at concentrations near 96 -hour LC $_{50}$ obtaining results (Table XVIII) of which also ranks are reported to apply the Mann-Whitney-Wilcoxon U-test (2.2-32).

Table XVIII
Transformation of observed values into ranks

Control		DOT 70 $\mu \mathrm{g} / \mathrm{l}$	
No.of trials $\times_{1 j}$	Ranks	No.of trials $x_{2 j}$	Ranks
7	3.5	19	15.5
14	12	15	14
3	2	14	12
9	10	8	7
8	7	19	15.5
8	7	75	17.5
2	3.5	75	17.5
7		8	74
		8	12
$n_{1}=8$	$R_{1}=46$	$n_{2}=10$	$R_{2}=125$

$$
\begin{aligned}
& \text { check: } \quad \frac{1+n}{2} \cdot n=R_{1}+R_{2}=171 . \\
& \\
& U_{1}=8 \cdot 10+\frac{8 \cdot 9}{2}-46=70 \quad ; \quad U_{2}=10
\end{aligned}
$$

Since U_{2} (the smaller between U_{1} and U_{2}) is smaller than the critical values reported in Table A-8, we must conclude that DDT has a significant influence on the learning process of salmons.

Since the difference $\left|n_{1}-n_{2}\right|=2<5$, the same hypothesis could have been tested by van der Waerden's X-test (2.2. 211), transforming the ranks of one sample into fractions

$$
\frac{r_{j}}{n+1}
$$

and obtaining then the normal variates from Table A-3. We thus get for the smaller of both samples (the first):

$\frac{r_{j}}{n+1}$.18	.63	.11	.53	.37	.37	.05	.18	Sum
$Y^{-1}\left(X_{j}\right)$	-.915	.332	-1.227	.075	-.332	-.332	-1.645	-.915	$X=5.773$

which is larger than all critical values reported in lable $A-21$ for $n=18$, hence confirming the above results.

2.7.1.9 Example of a comparison of two distributions by the Kolmogoroff-Smirnov test

Another example of a comparison between two distributions is obtained recurring to the Kolmogoroff-Smirnov test (2.2-19) with data in accordance to Hoppenheit (1977) regarding the cumulative relative frequencies of the production of eggs per egg-sac in population weekly exploited at rates of 10% and 90%. The observed values of samples with $n_{1}=100$ and $n_{2}=200$ and the computations of the differences between the frequencies are reported in Table XIX.

Table XIX
Differences between two distribution functions

Eggs/sac	High density cumulative frequencies F_{1}	Low density cumulative frequencies F_{2}	Differences
$0-10$	0	$F_{1}-F_{2} \mid$	
$10-20$.05	.01	0
$20-30$.15	.03	.04
$30-40$.50	.08	.12
$40-50$.80	.20	.42
$50-60$.90	.40	.60
$60-70$	1.	.70	.50
$70-80$	1.	.82	.30
$80-90$	1.	.90	.18
$90-100$	1.	1.	.10

Comparing the largest difference with the critical value (2.2-37) we obtain

$$
D_{n_{1}, n_{2}}=.60>1.48 \sqrt{\frac{300}{20000}}=.18
$$

Hence both distributions are significantly different.

2.7.1.10 Example of a comparison of two linked distributions

In Table V are reported two determinations for each pretreatment. Hence both observations for each individual are linked and the Wilcoxon pair difference test (2.2-38) is applied.

Let us consider sample 9 and evaluate the difference between the determinations, obtaining d_{j}, like in example 2.7.1.7. Transform the absolute values of the non-null differences into a ranked sequence and obtain the sums of the ranks of the positive, T^{+}, and negative, T^{-}, differences. The results are summarized in Table XX:

$$
\left(T^{+}+T^{-}=\frac{n_{d}\left(n_{d}+1\right)}{2}=136\right)
$$

Table XX
Ranks of observed values

```Non-null differences dj```	Ranks of absolute values
. 002	5
-. 003	7
-. 002	5
. 006	13
-. 007	14.5
-. 007	14.5
-. 004	9.5
-. 001	2
-. 004	9.5
-. 002	5
-. 001	2
-. 009	16
-. 005	12
-. 004	9.5
-. 001	2
-. 004	9.5
$n_{d}=16$	$18+118=136$

$$
T^{+}=18 \quad ; \quad T^{-}=\frac{16 \cdot 17}{2}-18=118 .
$$

The critical value for $n_{d}=16$ from Table $A-10$ results to be $T_{16(.975)}=30$ hence larger than the inferior of $T^{+}$and $T^{-}$, so that the hypothesis that both determinations lead to the same result must be rejected.

Applying the sign test (2.2-42) we have $n_{\min }=2$ of $n_{d}=16$. From Table $A-22$ it is seen to coincide with the $1 \%$ critical value. The alternative test ( $2.2-42^{\prime}$ ) with

$$
n_{\min }^{\prime}=8-(8-2) \sqrt{\frac{16}{21}}=2.76
$$

lies instead nearer to the $5 \%$ critical value, still confirming the previous results of a significant difference between the replications of the determinations.

### 2.7.2 Examples of tests atout location measures

### 2.7.2.1 Examples of a comparison of observed location measures with theoretic values

The hypotheses of Chapter 2.7.1.1 that $50 \%$ of the fish have a concentration level of 0.1 can be set parametrically, like (2.3-1):

$$
H_{0}: \mu=.1 \quad ; \quad H_{1}: \mu>.1
$$

which means that the mean value of the concentrations is either 0.1 or higher.
The possible tests can be based
(i) on the sample mean $\bar{x}=.2062$ and the standard deviation $s=.2196$;
(2.3-2) and Table A-4

$$
t_{9}=\frac{.2062-.1}{.2196} \sqrt{10}=1.53 \leqslant t_{9(.95)}=1.833
$$

(ii) on the sample mean, and the sample range $R=.766-.037=.729$; (2.3-3) and Table A-11

$$
\lambda_{10}=\frac{.2082-.1}{.729}=.146 \leqslant \lambda_{10(.95)}=.186
$$

(iii) not parametrically onthe samplemedian $\tilde{x}=\frac{1}{2}(.135+.167)=.151$ and the sample range; (2.3-4) and Tables A-2 and A-11

$$
\lambda_{10}=\frac{.151-.1}{1.175 \cdot .729}=.060 \leqslant \lambda_{10(.95)}=.186
$$

(iv) distribution free on the sample median and its confidence interval ( $L, U$ ) defined by (2.3-6) and (2.3-7)

$$
L=x_{(1)}=.037 ; U=x_{(n)}=.766 .
$$

In all four cases hypothesis $H$ that the mean value of the concentration is 0.1 can be accepted: In the last case, because of the low number of observations, the confidence interval equals the sample range. To consider a less extreme case, we evaluate now the $5 \%$ confidence interval for the median of the differences of example 2.7.1.7 using (2.3-6), (2.3-7) and recurring to Table $A-2$, obtaining:
$L=X_{(5)}=-4<\tilde{\mu}<U=n_{(17)}=0$.
The hypothesis (2.3-5) $H_{0}: \tilde{\mu}=0$, is hence acceptable as a limit situation.
Thus, sample 9 can be said to belong to a population with the preassigned concentration mean of 0.1 .

### 2.7.2.2 Examples of a comparison of two samples

Labat et al. (1974) observed disappearance of mucus cells in gill filaments following to exposure to copper sulfate obtaining the results of Table XXI. To test whether the exposure to copper sulfate has a significant influence we canchoose one of the tests of 2.3.2.

Table XXI
Visible mucus cells/ $100 \mu$

$\begin{gathered} \text { Control } \\ \times_{1 j} \\ \hline \end{gathered}$	$1 \mathrm{mg} \mathrm{Cu/1} \underset{\mathrm{x}_{2 \mathrm{j}}}{\substack{\text { C }}}$
16	10
17	8
12	10
18	12
11	13
18	14
12	6
15	5
16	7
14	5
18	10
12	11
	9
	8
$n_{1}=12$	$n_{2}=14$
$\bar{x}_{1}=14.917$	$\bar{x}_{2}=9.143$
$s_{1}^{2}=6.992$	$s_{2}^{2}=7.978$

In order to know whether (2.3-8) or (2.3-10) is preferable we first test whether the variances can be assumed to be equal (homoscedastic), supposing normality. This is done by test (2.4-6):

$$
F_{13,11}=\frac{7.97 B}{6.992}=1.14<F_{13,11(.95)} \simeq 2.775
$$

Hence the variances can be assumed to be homoscedastic. Test (2.3-8) gives,

$$
t_{24}=\frac{|14.917-9.143|}{\sqrt{\frac{11 \cdot 6.992+13 \cdot 7.978}{24}}} \sqrt{\frac{12 \cdot 14}{12+14}}=5.35
$$

Table XXII
The population density per square centimetre of Simuliidae pupae on the 6 surfaces of 30 boulders from 3 stations in the Endrick system (From Maitland and Penrey, 1967, with kind permission of Blackwell Scientific Publications Ltd., Oxford)

Boulder	Front (i)	Upper   (ii)	$\begin{aligned} & \text { Back } \\ & \text { (iii) } \end{aligned}$	Under (iv)	$\begin{aligned} & \text { Side } \\ & (\mathrm{v}) \end{aligned}$	Side   (vi)
A 1	Absent	0.37	0.27	0.00	0.02	0.01
2	0.01	0.04	0.79	0.16	0.17	0.04
3	0.09	0.96	2.52	0.02	0.25	0.66
4	0.00	0.68	2.49	0.16	0.01	0.30
5	0.00	0.00	1.06	0.01	0.17	0.00
6	0.00	0.01	1.97	0.00	0.00	0.00
7	0.00	0.19	0.49	0.05	0.15	0.10
8	0.00	0.01	0.71	0.00	1.69	0.01
9	0.00	0.03	3.85	0.00	0.03	0.02
10	0.00	0.08	0.09	0.00	0.00	0.11
11	0.01	0.22	0.01	0.00	0.00	0.01
12	0.04	0.36	0.07	0.04	0.11	1.05
13	0.03	0.01	0.32	0.51	0.08	0.12
14	0.00	0.02	0.06	0.00	0.00	0.00
B 1	0.00	0.03	0.05	0.00	Absent	0.05
2	0.04	0.14	0.04	0.08	0.02	0.02
3	0.02	0.02	0.30	0.01	0.07	0.00
4	0.00	0.00	0.00	0.08	0.00	0.00
5	0.00	0.08	0.07	0.00	0.00	0.00
6	0.03	0.05	0.13	0.00	0.06	0.00
C 1	0.08	0.08	0.43	0.00	0.10	0.10
2	0.09	0.45	0.23	0.00	0.04	0.00
3	0.17	Absent	0.83	0.01	0.01	0.12
4	0.00	0.13	0.06	0.00	0.02	0.02
5	0.04	0.15	0.00	0.01	0.05	0.00
6	0.04	0.68	0.95	0.00	Absent	0.00
7	0.00	0.35	0.00	0.00	0.00	0.00
8	0.00	0.11	0.06	0.00	0.03	0.07
9	0.16	0.44	0.15	0.00	0.16	0.06
10	0.10	0.11	0.19	0.33	0.29	0.27

From Table A-4 it is seen that this value is higher than all critical values reported there for 24 DF , hence the difference in numbers of stainable mucus cells in gill filaments of copper exposed trout and control fish is highly significant.

In another experiment Maitland and Penney (1967) calculated a figure for the population density in terms of the number of pupal cases per square centimetre of boulder surface. Results were obtained from 30 boulders: 14 from Station $A$ (Drumtian), 6 from Station B (Finnich) and 10 from Station C (Blanc), (Table XXII).

## Table XXIII

A comparison of the mean population density of Simuliidae pupae on any two surfaces, taking into account the variation among 30 boulders examined from the Endrik system (N.B. Side (vi) was not compared with the other boulder surfaces since it was found not to be statistically different from side ( V ) )
(From Maitland and Penney, 1967, with kind permission of Blackwell Scientific Publications Ltd., Oxford)

Areas compared	$t$	Degrees   of   freedom	$\alpha$	Conclusion
A Front (i) with back (iii)	3.36	57	0.01	Highly significant   (more pupation on back)   Significant
B Upper (ii) with back (iii)	2.30	57	$0.05-0.01$	(more pupation on back)   Highly significant
C Under (iv) with back (iii)	3.34	58	$<0.01$	(more pupation on back)   (man
D Side (v) with back (iii)	2.60	56	$0.05-0.01$	Significant   (more pupation on back)   E Side (v) with side (vi)
F Upper (ii) with under (iv)	0.03	56	0.5	No significant difference
G Side (v) with under (iv)	0.15	56	0.5	No significant difference
H Front (i) with under (iv)	0.45	57	0.5	No significant difference
I Front (i) with upper (ii)	0.37	56	0.5	No significant difference
J Side (v) with upper (ii)	0.09	57	0.5	No significant difference
K Side (v) with front (i)	0.17	55	0.5	No significant difference

A statistical analysis was made of the results from all three stations considered together. This was done by comparing the population density on any two surfaces, taking into account the variation among the 30 boulders examined (2.3-8). From these results (Table XXIII) it can be seen that pupation is selective for the back surface and is random between all the other surfaces. In the field experiments using bricks it was also found that pupation was selective for the back surface.

The comparison of the distributions of Table XXI can also be performed by the median test (2.3-16) first building the fourfold table:

Number of values $>\tilde{x}=12$	8	Sample 1	Sample 2	
	4	10		
	12	12	16	

Since $\frac{2 \cdot 4}{(8+1)(12+1)}<1$ Fisher's exact test (2.2-9) can be applied leading to $P=.009$ confirming $(8+1)(12+1)$ the result obtained by the t-test.

Other comparisons like Scheffe's t-test, the Mann-Whitney-Wilcoxon test, the run test and the Kolmogoroff-Smirnov test could also be used. Preference to one or the other method must be given according to the acceptance or not of the normality condition.

### 2.7.2.3 Example of a comparison of two linked samples

Consider again Chapter 2.7.1.10. To test whether the mean concentrations of both determinations differ or not significantly, we can recur to (2.3-15). The number of differences is $m=21$ (and not 16 , as in Table $X X$. since also the 5 null differences must be considered) and the means $\bar{x}_{1}=.0785, \bar{x}_{2}=.0807$. Hence,

$$
t_{20}=\frac{|.0785-.0807| \sqrt{21}}{\sqrt{\frac{.000227}{20}}}=2.999
$$

which is larger than the $5 \%$ critical value $\{=2.086$ ) so that we reject the null hypothesis as in Chapter 2.7.1.10: The mean concentration of the two determinations differs significantly.

### 2.7.2.4 Examples of multiple distribution free comparisons

We use as example simplified data from Siebers and Bulnheim (1977). The aim of the authors has been to test whether the rate of amino-acid uptake of the Enchytraeus albidus is influenced by salinity. The test organisms were exposed to four concentrations (rows matched pairs) namely $20,50,120$ and $240 \mu \mathrm{M} / 1$ of glycine. The rates of uptake ( $\mu \mathrm{Moles} /$ $\mathrm{g} / \mathrm{h}$ ) were measured at salinities of $0 \%, 10 \%, 20 \%$ and $30 \%$ (columns), Table XXIV.

Table XXIV
Rates of uptake ( $\mu$ Moles/g/h)/salinities

Glycine   concentration   in water	$0 \%$	$10 \%$	$20 \%$	$30 \%$
20	.0020	.0310	.262	.605
.0069	.0304	.368	.706	
50	.0055	.0591	.522	.334   .0446
120	.0422	.517	.988	
240	.0144	.07429	.566	1.805
.0394	.1190	.544	1.710	

First we do not consider the different glycine concentrations and hence treat Table XXIV as a one-way classification, so that we can apply the test of Kruskal Wallis (2.3-22). We thus transform the uptake rates into ranks from 1 to 32 and sum for column totals $R_{i}$ obtaining Table XXV.

Table XXV
Ranks of rates of uptake

	0\%	$10 \%$	20 \%	$30 \%$	
	1	7	17	22	
	3	6	18	25	
	2	12	20	28	
	11	9	19	27	
	4	13	21	31	
	5	14	23	29	
	10	15	26	32	
	8	16	24	30	
Sums $R_{i}$	44	92	168	224	$528=\frac{1+32}{2} 32$

Hence,

$$
x_{3}^{2}=\frac{12}{32 \cdot 33 \cdot 8}\left(44^{2}+92^{2}+168^{2}+224^{2}\right)-3 \cdot 33=27.1
$$

which is highly significant: The uptake rate depends on the salinity.
Now we consider also the four glycine concentration classes and apply the Friedman test (2.3-23) transforming the uptake rates of any row into ranks from 1 to 4, and sum again for columns totals, obtaining Table XXVI, from which a between columns test after elimination of the influence of the rows ( $=$ glycine concentration) is obtained:

$$
x_{3}^{2}=\frac{12}{4 \cdot 8 \cdot 5}\left(9^{2}+15^{2}+24^{2}+32^{2}\right)-3 \cdot 8(5)=22.95
$$

which confirms the above result as was to be expected in view of the consistency of the table.

Table XXVI
Row ranks of uptake rates

	$0 \%$	$10 \%$	$20 \%$	$30 \%$
20	1	2	3	4
50	1	2	3	4
120	1	2	3	4
2	1	2	3	4
240	1	2	3	4
$R_{i}$	9	15	24	4

### 2.7.2.5 Examples of multiple a posteriori comparisons

In the analysis of variance of Table VIII we got to the conclusion that the 8 samples differ significantly between each other, because

$$
F_{7,62}=\frac{.099772}{.011891}=8.39>F_{7,62(.95)}=2.17 .
$$

It would be interesting to know if all sample means are widely spread or if only some differ particularly from the others.

We first follow the Student-Newman-Keuls procedure, building Table XXVII like (2.3-28).

Table XXVII
Between mean differences


From Table VIII we get $\mathrm{MS}_{\mathrm{w}}=.011891$ with 62 DF . To apply (2.3-29) we need from Table A-12 the studentized ranges $Q_{k, 62(.95)}$ for $k=2 \ldots 8$, which are:

$$
2.828,3.398,3.735,3.975,4.161,4.312,4.439
$$

which when multiplied by $\sqrt{\mathrm{MS}_{\mathrm{W}}}=.109$ become:

$$
.308, .370, .407, .433, .454, .470, .484 .
$$

To test any particular range between two means of Table XXVII, we need only compare it with these quantities multiplied by $\sqrt{\left(n_{i}+n_{g}\right) / 2 n_{i} n_{g}}$. The significant differences of Table XXVII are underlined, thus leading to the conclusion that either the sample means . 069 , . 080 and/or the means .221 and .241 are those who affect mainly the sample MS.

Another approach is that based on the construction of a dendrogram (Sokal and Sneath, 1963), e.g. by single linkage, starting from the differences in Table XXVII.

At the levels of .003 means $\bar{x}(1)$ and $\bar{x}(2)$ join to a cluster, at the level of $.005 \bar{x}(5)$ and $\bar{x}(6)$ join, at the level of .008 $\bar{x}(3)$ joins to $\bar{x}(1)$ and $\bar{x}(2)$ and so on, leading to the dendrogram of Figure B.

If we evaluate for each cluster the F-ratio with the same $M S_{W}$, the only ratio which is higher than the critical value is achieved when clusters with means $\left[\bar{x}(1), \bar{x}_{(2)}, \bar{x}_{(3)}, \bar{x}_{(4)}\right]$ and $[\bar{x}(5), \bar{x}(6), \bar{x}(7), \bar{x}(8)]$ join to a single cluster. Hence, we may conclude, in contrast to the Student-Newman-Keuls procedure that [ $\bar{x}_{(1)} \ldots \bar{x}_{(4)}$ ] form a homogeneous cluster, so as $[\bar{x}(5) \cdots \bar{x}(8)]$, but that both clusters differ significantly between them. The significance level is obviously not equal to that chosen for the F-ratio since the decision procedure is sequential. It is seen that the dendrogram gives a very good insight of the structure of the between samples variability.

```
 Between
 means
differences
```

(1) (2) (3) (4)



## Order (i) of means



Figure 8 Dendrogram of the means

### 2.7.3 Examples of tests about variances

The comparison of two variances by the F-ratio (2.4-6) has already been carried out several times as for example in Section 2.7.2.2, and hence will not be repeated here.

An example for the comparison of nine variances by the Cochran test can be found in Section 1.7.1. We will now see an example of Bartlett's and Scheffe's tests.

Let us consider again the nine samples of Table $V$ whose variances are for the first pretreatment and determination:

Sample $n^{0}$	1	2	3	4	5	6	7	8	9
Sample size $n_{i}$	10	10	5	10	5	5	5	10	21
$10^{4} \times$ variances $\mathrm{s}_{\mathrm{i}}^{2}$	443.67	99.73	9.47	5.16	8.94	39.54	82.25	209.59	19.74

The pooled variance is:

$$
10^{4} \times s^{2}=\frac{\Sigma\left(n_{i}-1\right) s_{i}^{2}}{\sum n_{i}-9}=\frac{7778.95}{72}=108.04
$$

hence,

$$
s^{2}=.0108 .
$$

To obtain Bartlett's test (2.4-10) we first evaluate

$$
k=1+\frac{1}{3.8}\left(1.49 \overline{4}-\frac{1}{72}\right)=1.0617
$$

and then

$$
x_{8}^{2}=64.24,
$$

which is very high denoting that the samples are heteroscedastic, confirming the impression we got in Section 1.7.4: Probably some outliers or some wrong determinations among the observations have influenced the values of some variances.

Another method of testing the hypothesis of homoscedasticity is that proposed by Scheffé. We have divided randomly the first 8 samples into 2 sub-groups each, and the 9th sample into 3 sub-groups. For each sub-group we have evaluated the variances and their normalizing transformation (2.4-13) obtaining Table XXVIII. Then an ordinary ANOVA has been performed (see Section 1.4.1) obtaining $S S\left(\theta_{i} \mid \mu\right)=90.648, S S(\varepsilon)=7.211$ so that $F_{8,10}=15.71$ which is highly significant confirming the former results.

Table XXVIII
Normalizing transformation of variances $\times 10^{6}$
Sample Nos.

	1	2	3	4	5	6	7	8	9
	$\begin{aligned} & 8.653 \\ & 7.007 \end{aligned}$	$\begin{aligned} & 7.252 \\ & 7.236 \end{aligned}$	2.292   3.447	3.998   5.340	$\begin{aligned} & 1.064 \\ & 3.359 \end{aligned}$	$2.944$   3.274	3.089   4.332	$7.962$   6.850	$\begin{aligned} & 7.817 \\ & 7.624 \\ & 7.184 \end{aligned}$
Means	7.8300	7.2440	2.8695	4.6690	2.2115	3.109	3.7105	7.406	7.5417
	$\bar{x}=5.3008$								

### 2.7.4 Examples of tests about regression and correlation <br> 2.7.4.1 Example of a simple regression problem

Fishes placed in a rotating tube compensate for torque until a certain critical velocity is reached. The fish are then forced to rotate with the tube. The critical rate of rotation depends on the age (length) of the fish and of course on its health conditions. Lindahl and Schwanbom (1971) demonstrated the dependence in form of a linear regression of the critical rate of rotation per minute (r.p.m.) on the M.Mercury -OH content (mg/g.w.w.) of Leuciscus leuciscus, having obtained the following results:

$y_{i}$	r.p.m.	60	60	58	50	52	55	45	58	45	22	25	27	36	39	47	23
$x_{j}$	$\mathrm{mg} / \mathrm{g} \cdot \mathrm{w} \cdot \mathrm{w}$.	49	55	70	110	90	85	350	100	260	660	480	460	420	436	300	670

The regression equation $\phi\left(x_{j}\right)$ is given by:

$$
\phi\left(x_{j}\right)=61.333-.0608 x_{j}
$$

with a residual variance $S_{R}^{2}=13.98$. Test $t(2.5-23)$ gives a very high value, according to a determination coefficient of .925 , so that the existence of a regression is out of any doubt. To test whether the departures of the observed values $y_{j}$ from the regression line $\phi\left(x_{j}\right)$ ( $\equiv$ prevision errors, $\varepsilon_{j}$ ) are randomly distributed, we can recur to the run test (2.2-27). Ordering the $x_{j}$ values we obtain:

$x_{j}$	49	55	70	85	90	100	110	260	300	350	420	436	460	480	660	670
$\varepsilon_{j}$	+1.65	+2.01	+.92	-1.17	-3.86	+2.75	-4.65	-.53	+3.91	+4.95	$+.20+4.18$	-6.37	-7.15	+.80	+2.40	

The sequence of the errors $\varepsilon_{j}=y_{j}-\phi\left(x_{j}\right)$ can be considered as a sequence of positive and negative signs, hence as a sequence of 7 runs. Table A-9 gives us for $n_{1}=6$ ( number of negative signs) and $n_{2}=10$ ( $\equiv$ number of positive signs) the acceptance interval ( $\alpha=.05$ ) of 4;13, where our computed number of runs is comprised. Hence the departures of the regression line can be assumed to be randomly distributed and the regression line accepted as satisfactory.

Regression and correlation methods are widely used tools and further examples can be found in Sections 1.7.2, 1.7.5 and 1.7.6

### 2.7.4.2 Example of a rank regression problem

For simplicity, consider a sample of 10 Scorpaena porcus of example (1.7.6) for 1973, randomly chosen for $j=34,37,40,7,4,11,42,3,22,30$. Applying Grubbs' test for outliers ( $2.6-5$ ), the values of the last sample $(j=42)$ must be suspected as outliers. Wanting to know the correlation between the mercury content $y_{j}$ and the body weight $W_{j}$, without loosing the information of this last element, we can apply Spearman's (2.5-9) or Kendall's (2.5-13) rank correlation coefficients. Herefore we write the ranks of one variable (say $y$ ) in increasing order and the corresponding ranks of the other variable, $w$, below them. To obtain Spearman's $r_{S}$ we evaluate then the sum of the squared differences between the corresponding ranks, whereas for Kendall's $\tau$ we count the number of all higher ranks on the right of the ranks of the non-ordered variable (w), obtaining the results summarized as follows:

$j$	1	2	3	4	5	6	7	8	9	10	Sums
$R_{y_{j}}$, Ranks of $y$	1	2	3	4	5	6	7	8	9	10	
$R_{w_{j}}$, Ranks of $w$	1	2	4	3	5	8	6	7	9	10	
$\left(R_{y_{j}}-R_{w_{j}}\right)^{2}$	0	0	1	1	0	4	1	1	0	0	8
$S_{i}=N\left(R_{w_{k}}>R_{w_{j}}\right)_{k>j}$	9	8	6	6	5	2	3	2	1	0	$42=S$

With the sums in the last columns we can now easily evaluate

$$
r_{s}=1-\frac{6}{10 \cdot 99} \cdot 8=.95
$$

and,

$$
\tau=\frac{4}{10 \cdot 9} \cdot 42-1=.87 .
$$

By inspection of Table $A-14$ we see that both tests are significant at the $1 \%$ level, hence the correlation between body weight and mercury content is significant.

### 2.7.5 Examples of miscellaneous tests

### 2.7.5.1 Examples of tests for outliers

We first analyse the first determinations of the 9 samples of Table $V$. Are there any outliers? Applying Dixon's (2.6-2) and Grubbs' test (2.6-5) we get the same response: individual $n^{0} 9$ of sample 1 is an outlier since

$$
r_{10}=\frac{x_{(10)}-x_{(9)}}{x_{(10)}-x_{(1)}}=\frac{.766-.266}{.766-.037}=.686
$$

and,

$$
T_{10}=\frac{x_{(10)^{-\bar{x}}}}{s}=\frac{.766-.206}{.211}=2.65
$$

which are both larger than the critical values of Table A-15 and A-16.

For sample 9 , being $n_{9}>20$ we could also evaluate (2.6-6):

$$
Z_{21}=\frac{R}{S}=\frac{.165}{.044}=3.75
$$

which lies between the critical values of Table $A-17$, hence confirming that no value must be suspected to be an outlier.

Another example can be obtained by McMahon and Rigler (1962) who examined the heartbeat rate of a Daphnia under control conditions, immediately after placing the animals in the observation chamber and after other 10-time intervals, obtaining: 265, 204, 188, 187, 187, 189, 184, 190, 188, 182, 185. Both Dixon and Grubbs' test detect the first 2 values as outliers; hence we may conclude that the heart-beat rate has been normalized after 2 time intervals.

Another example has been seen in Section 2.7.4.2.

### 2.7.5.2 Examples of tests about randomness

We have already seen an example of the control of randomness in Section 2.7.4.1. Now we will see two applications obtained by Hoppenheit (1977).

A Tisbe holothuria culture (Copepoda, Harpacticoida) was permanently exposed to 148 $\mu \mathrm{g} C d / l$ and exploited weekly ( $30 \%$ removal). The log transformed population densities (per 10 ml ) assessed before the weekly harvests, are (Figure 9):

2.4362	2.5145	2.3636	2.5172	2.2900	2.4314	2.1818	2.4857	2.3747
2.4502	2.4564	2.5119	2.0294	2.3802	2.6599	2.5340	2.1673	2.3483
2.3802	2.2122	2.6955	2.3032	2.2718	2.2553	2.0128	2.3892	2.4728

We apply the mean square successive difference test (2.6-7), the circular serial correlation coefficient of lag $h=1(2.6-8)$ and the runs up and down test (2.6-9) for which the values of the differences between successive population densities are first transformed into + and - signs:

$$
\begin{array}{lllllllll} 
& + & - & + & - & + & - & + & - \\
+ & + & + & - & + & + & - & - & + \\
+ & - & + & - & - & - & - & + & +
\end{array}
$$

we get the following results:

$$
\eta_{27}^{2}=2.1889 ; \quad R_{1,27}=-.094 ; \quad z=3.94
$$

It may be underlined that the last test would be exactly the same even without log transformations.

The results are contradictory. The first 2 parametric tests lie well within the confidence limits of Table A- 18 hence leading to the acceptance of the hypothesis of randomness. Instead the third test for runs up and down tells us that there is no trend (because of the positive sign) but the fluctuations are too frequent to be considered randomly distributed. This depends obviously on the non-parametric character of the test which does not make any difference between small and large differences. Since the distribution of the values can be assumed to be normal, and since we are mainly interested to test if there is a trend or not, we may rely on the first two tests. The sign test of Cox and Stuart (Section 2.6.2) confirms no trend.

We consider the same experiment for which weekly $10 \%$ were removed, obtaining (Figure 10):

2.1903	2.3075	2.6031	2.6532	2.7388	2.3997	2.4378	2.4742	2.5145
2.2833	2.0453	2.3284	2.5185	2.4564	2.3856	2.3464	2.2967	2.4330
2.1987	1.8062	2.1106	2.5276	1.8865	1.4472	2.0607		

with the signs of the successive differences:

$$
\begin{array}{lllllllll} 
& + & + & + & + & - & + & + & + \\
- & - & + & + & - & - & - & - & + \\
- & - & + & + & - & - & + & \\
n_{25}^{2}=.9774 ; & R_{1.25}=-.805 ; & z=-2.63
\end{array}
$$

All tests lie under the lowest critical value and lead to the conclusion:
i) The data are not randomly distributed because of the presence of a trend ( $\eta^{2},|R|$, negative sign of $z$ ).
ii) The trend is decreasing (sign of $R$ ).

Only the sign test of Cox and Stuart with 3 positive signs of 12 does not reach the $5 \%$ significance level. But this is mainly due to the fact that this test is based on the differences, hence on half as much values as the other tests, so that the sampling variance naturally increases.


Figure 9 Time sequence of the log transformed population densities of a Tisbe holothuriae culture (Copepoda, Harpactoida) with $30 \%$ weekly removal


Figure 10 Time sequence of the log transformed population densities of a Tisbe holothuriae culture (Copepoda, Harpactoida) with $10 \%$ weekly removal

## 3. REFERENCES

d'Agostino, R. and E.S. Pearson Tests for departure from normality. Empirical results 1973 for the distributions of $b_{2}$ and $\sqrt{b_{1}}$. Biometrika, 60:613-22

Aspin, A.A. Tables for use in comparisons whose accuracy involves two variances, 1949 separately estimated. Biometrika, 36:290-3

Bayne, B.L., R.L. Thomson and J. Wieblows, Some effects of temperature and food on the 1973 rate of oxygen consumption by Mytilus edulis. In Effects of temperature on ectothermic organisms, edited by E . Wieser. Berlin, Springer, pp.118-93

Bernhard, M. Manual of methods in aquatic environment research. Part 3. Sampling and 1976 analysis of biological material (Guidelines for the FAO(GFCM)/UNEP Joint Coordinated Project on Pollution in the Mediterranean). FAO Fish.Tech.Pap., (158):124 p.

Bowman, K.O. and L.R. Shenton Omnibus-test contours for departures from normality 1975 based on $\sqrt{b_{1}}$ and $b_{2}$. Biometrika, 62:243-9

Bulnheim, H.-P. Effects of inbreeding on the relative fitness of the amphipod Gommarus 1977 duebeni, Liljeborg 1852. Crustaceana (Suppl.4):3-14

Cochran, W.G. The distribution of the largest of a set of estimated variances as a. 1941 fraction of their total. Ann.Eugen., 11:47-52

Sampling techniques. New York, Wiley, 330 p. 1960

Conover, W.J. Practical non-parametric statistics. New York, Wiley, 462 p. 1971

Cox, D.R. and A. Stuart Some quick tests for trend in location and dispersion. 1955 Biometrika, 42:80-95

David, F.N. Tables of the ordinates and probability integral of the distribution of 1954 the correlation coefficient in small samples. London, Cambridge University Press, 57 p.

David, H.A. Upper 5 and 1\% points of the maximum F-ratio. Biometrika, 39:422-4 1952

David, H.A., H.O. Hartley and E.S. Pearson The distribution of the ratio, in a single 1954 normal sample, of range to standard deviation. Biometrika, 41:482-93

Diem, K. (ed.) Documenta Geigy; Scientific Tables. Basel, J.R. Geigy, 742 p. 1962

Dixon, W.J. Ratios involving extreme values. An...Math.Statist., 22:68-78 1951
Dunn, D.J. and V.A. Clark ..... Applied statistics. New York, Wiley, 387 p.1974
Elliott, J.M. Statistical analysis of samples of benthic invertebrates. Sci.Publ. 1971 Freshwat.Biol.Assoc., (25):144p.
Filliben, J.J. The probability plot correlation coefficient test for normality. 1975 Technometrics, 17:111-7
Finney, D.J. Statistical method in biological assay. High Wycombe and London, C. Griffin, 1971668 р.
Fisher, R.A. Statistical methods for research workers. Edinburgh, Oliver \& Boyd, 1954 12th ed:356 p.
Fisher, R.A. and F. Yates Statistical tables for biological, agricultural and medical1963 research. Edinburgh, Oliver \& Boyd, 6th ed:138 p.
Friedman, M. The use of ranks to avoid the assumption of normality implicit in the1937 analysis of variance. J.Am.Statist.Assoc., 32:675-701
A comparison of alternative tests of significance for the problem of $\underline{m}$1940 rankings. Ann.Math.Statist., 11:86-92
Gabriel, K.R. A procedure for testing the homogeneity of all sets of means in analysis 1964 of variance. Biometrics, 20:459-77
Garner, W.R. and W.J. McGill The relation between information and variance analysis. 1956 Psychometrika, 21:219-28
Grubbs, F.E. Procedures for detecting outlying observations in samples. Technometrics, 1969 11:1-21
Harter, H.L. Tables of range and studentized range. Ann.Math.Statist., 31:1122-471960
Hatfield, C.T. and P.H. Johansen Effects of four insecticides on the ability of 1972 Atlantic salmon parr (Salmo salar) to learn and retain a simple conditioned response. J.Fish.Res.Board Can., 29:315-21
Hoppenheit, M. On the dynamics of exploited populations of Tisbe holothuriae (Copepoda,1977 Harpacticoida). Helgol.Wiss.Meeresunters., 29:503-23
Kendall, M.G. and A. Stuart The advanced theory of statistics. London, Ch. Griffin, 1961 vol.2:676 p.
Kolmogoroff, A. Confidence limits for an unknown distribution function. Ann.Math. 1941 Statist., 12:461-3


Owen, D.B. Handbook of statistical tables. Reading, Mass., Addison-Wesley, 349 p. 1962

Pearson, E.S. A further development of tests for normality. Biometrika, 22:239-49 1930

Pearson, E.S. and H.O. Hartley Biometrika tables for statisticians. 1. London, 1958 Cambridge University Press, 2nd ed:240 p.

Rao, C.R. Advanced statistical methods in biometric research. New York, Wiley, 390 p. . 1952

Renzoni, A. A case of mercury abatement along the Tuscan coast. In IIIes journées 1977 d'études sur les pollutions marines, Split 1976. Monaco, CIESMM. pp.95-7

Rohlf, F.J. and R.R. Sokal Statistical tables. San Francisco, W.H. Freeman and Co.,
1969

Sachs, L. Statistische Methoden, ein Soforthelfer. Berlin, Springer, 103 p. and tables 1970

Scheffé, H. The analysis of variance. New York, Wiley, 477 p. 1959

Searle, S.R. Linear models. New York, Wiley, 532 p. 1971

Shapiro, S.S. and M.B. Wilk An analysis of variance test for normality (complete 1965 samples). Biometrika, 52:591-611

Shapiro, S.S., M.B. Wilk and H.J. Chen A comparative study of various tests of
1968 normality. J.Am.Statist.Assoc., $63: 1343-72$
Shenton, L.R. and K.O. Bowman A bivariate model for the distribution of $\sqrt{b_{1}}$ and $b_{2}$. 1977 J.Am.Statist.Assoc., 72:206-11
Siebers, D. and H.-P. Bulnheim Salinity dependence, uptake kinetics, and specificity
1977 of amino-acid absorption across the body surface of the oligochaete annelid
Enchytraeus albidus. Helgol. Wiss.Meeresunters., $29: 473-92$

Smirnov, N. Table for estimating the goodness of fit of empirical distributions. 1948 Ann.Math.Statist., 19:279-81

Snedecor, G.W. Statistical methods. Ames, Iowa State College Press, 5th ed:534 p. 1956

Sokal, R.R. and F.J. Rohlf 1969

Biometry. San Francisco, W.H. Freeman and Co., 776 p.

```
Sokal, R.R. and P.H.A. Sneath Principles of numerical taxonomy. San Francisco,
 1963 Freeman Co., 359 p.
Stange, K. and H.J. Henning Graf/Henning/Stange - Formeln und Tabellen der mathema-
 1966 tischen Statistik. Berlin, Springer, 362 p.
Stöppler, M. et al. Mercury in marine organisms in the Mediterranean and other
 European seas. Rapp.P.-Réun.CIESMM, }24\mathrm{ (in pres.s)
Stora, G. Contribution a l'étude de la notion de concentration lethale limite moyenne
 1972 (CL 50) appliquée a des invertébrés marins. 1. Etude méthodologique.
 Téthys, 4:597-644
Swed, F.S. and C. Eisenhart Tables for testing randomness of grouping in a sequence
 1943 of alternatives. Ann.Math.Statist., 14:66-87
Thompson, C.M. Tables of percentage points of the }\mp@subsup{\chi}{}{2}\mathrm{ distribution. Biometrika, 32:
 1941 187-91
Van der Waerden, B.L. Mathematische Statistik. Berlin, Springer, 360 p.
 1 9 7 1
Wald, A. and J. Wolfowitz On a test whether two samples are from the same population.
 1940 Ann.Math.Statist., 11:147-62
Wilcoxon, F. and R.A. Wilcox Some rapid approximate statistical procedures. New York,
 1964 American Cyanamid Co., }28\mathrm{ p.
```


## ANNEX

## STATISTICAL TABLES

Table A-1
Common logarithms of factorials
(from Rohlf and Sokal, 1969, with kind permission of W.H. Freeman and Co., San Francisco (C)

	0	10	20	30	40
0	0.0000	6.5598	18.3861	32.4237	47.9116
1	0.0000	7.6012	19.7083	33.9150	49.5244
2	0.3010	8.6803	21.0508	35.4202	51.1477
3	0.7782	9.7943	22.4125	36.9387	52.7811
4	1.3802	10.9404	23.7927	38.4702	54.4246
5	2.0792	12.1165	25.1906	40.0142	56.0778
6	2.8573	13.3206	26.6056	41.5705	57.7406
7	3.7024	14.5511	28.0370	43.1387	59.4127
8	4.6055	15.8063	29.4841	44.7185	61.0939
9	5.5598	17.0851	30.9465	46.3096	62.7841

Table A-2
Correction factors for ranges $\mathrm{c}_{\mathrm{n}}, \mathrm{d}_{\mathrm{n}}$ and $\mathrm{g}_{\mathrm{n}}$ and critical values for the median $\mathrm{h}_{\mathrm{n}}$ (after Stange and Henning, 1966, and Sachs, 1970, with kind permission of Springer Verlag, Berlin)

n	$\mathrm{c}_{\mathrm{n}}$	$\mathrm{d}_{\mathrm{n}}$	$\mathrm{g}_{\mathrm{n}}$	$\mathrm{h}_{\mathrm{n}}$
$\begin{array}{r} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{array}$	$\begin{aligned} & 1.000 \\ & 1.160 \\ & 1.092 \\ & 1.198 \\ & 1.136 \\ & 1.214 \\ & 1.159 \\ & 1.223 \\ & 1.175 \end{aligned}$	$\begin{aligned} & 1.128 \\ & 1.693 \\ & 2.059 \\ & 2.326 \\ & 2.534 \\ & 2.704 \\ & 2.847 \\ & 2.970 \\ & 3.078 \end{aligned}$	$\begin{aligned} & .756 \\ & .525 \\ & .427 \\ & .371 \\ & .335 \\ & .308 \\ & .288 \\ & .272 \\ & .259 \end{aligned}$	$\begin{aligned} & - \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$
$\begin{aligned} & 11 \\ & 12 \\ & 13 \\ & 14 \\ & 15 \\ & 16 \\ & 17 \\ & 18 \\ & 19 \\ & 20 \end{aligned}$	1.229 1.190 1.233 1.195 1.237 1.202 1.238 1.207 1.239 1.212	$\begin{aligned} & 3.173 \\ & 3.258 \\ & 3.336 \\ & 3.407 \\ & 3.472 \\ & 3.532 \\ & 3.588 \\ & 3.640 \\ & 3.689 \\ & 3.735 \end{aligned}$	$\begin{aligned} & .248 \\ & .239 \\ & .231 \\ & .224 \\ & .217 \\ & .212 \\ & .207 \\ & .203 \\ & .199 \\ & .195 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 2 \\ & 3 \\ & 3 \\ & 3 \\ & 4 \\ & 4 \\ & 4 \\ & 5 \end{aligned}$

Critical values of the normal variate $z$

$$
\left(-z_{(\alpha)}=z_{(1-\alpha)}\right)
$$

(from Diem, 1962, with kind permission of J.R. Geigy, Basel)


$\alpha \rightarrow$	0.000	0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009
0.50	0.0000	0.0025	0.0050	0.0075	0.0100	0.0125	0.0150	0.0175	0.0201	0.0226
0.51	0.0251	0.0276	0.0301	0.0326	0.0351	0.0376	0.0401	0.0426	0.0451	0.0476
0.52	0.0502	0.0527	0.0552	0.0577	0.0602	0.0627	0.0652	0.0677	0.0702	0.0728
0.53	0.0753	0.0778	0.0803	0.0828	0.0853	0.0878	0.0904	0.0929	0.0954	0.0979
0.54	0.1004	0.1030	0.1055	0.1080	0.1105	0.1130	0.1156	0.1181	0.1206	0.1231
0.55	0.1257	0.1282	0.1307	0.1332	0.1358	0.1383	0.1408	0.1434	0.1459	0.1484
0.56	0.1510	0.1535	0.1560	0.1586	0.1611	0.1637	0.1662	0.1687	0.1713	0.1738
0.57	0.1764	0.1789	0.1815	0.1840	0.1866	0.1891	0.1917	0.1942	0.1968	0.1993
0.58	0.2019	0.2045	0.2070	0.2096	0.2121	0.2147	0.2173	0.2198	0.2224	0.2250
0.59	0.2275	0.2301	0.2327	0.2353	0.2378	0.2404	0.2430	0.2456	0.2482	0.2508
0.60	0.2533	0.2559	0.2585	0.2611	0.2637	0.2663	0.2689	0.2715	0.2741	0.2767
0.61	0.2793	0.2819	0.2845	0.2871	0.2898	0.2924	0.2950	0.2976	0.3002	0.3029
0.62	0.3055	0.3081	0.3107	O 3134	0.3160	0.3186	0.3213	0.3239	0.3266	0.3292
0.63	0.3319	0.3345	0.3372	0.3398	0.3425	0.3451	0.3478	0.3505	0.3531	0.3558
0.64	0.3585	0.3611	0.3638	0.3665	0.3692	0.3719	0.3745	0.3772	0.3799	0.3826
0.65	0.3853	0.3880	0.3907	0.3934	0.3961	0.3989	0.4016	0.4043	0.4070	0.4097
0.66	0.4125	0.4152	0.4179	0.4207	0.4234	0.4261	0.4289	0.4316	0.4344	0.4372
0.67	0.4399	0.4427	0.4454	0.4482	0.4510	0.4538	0.4565	0.4593	0.4621	0.4649
0.68	0.4677	0.4705	0.4733	0.4761	0.4789	0.4817	0.4845	0.4874	0.4902	0.4930
0.69	0.4959	0.4987	0.5015	0.5044	0.5072	0.5101	0.5129	0.5158	0.5187	0.5215
0.70	0.5244	0.5273	0.5302	0.5330	0.5359	0.5388	0.5417	0.5446	0.5476	0.5505
0.71	0.5534	0.5563	0.5592	0.5622	0.5651	0.5681	0.5710	0.5740	0.5769	0.5799
0.72	0.5828	0.5858	0.5888	0.5918	0.5948	0.5978	0.6008	0.6038	0.6068	0.6098
0.73	0.6128	0.6158	0.6189	0.6219	0.6250	0.6280	0.6311	0.6341	0.6372	0.6403
0.74	0.6433	0.6464	0.6495	0.6526	0.6557	0.6588	0.6620	0.6651	0.6682	0.6713
0.75	0.6745	0.6776	0.6808	0.6840	0.6871	0.6903	0.6935	0.6967	0.6999	0.7031
0.76	0.7063	0.7095	0.7128	0.7160	0.7192	0.7225	0.7257	0.7290	0.7323	0.7356
0.77	0.7388	0.7421	0.7454	0.7488	0.7521	0.7554	0.7588	0.7621	0.7655	0.7688
0.78	0.7722	0.7756	0.7790	0.7824	0.7858	0.7892	0.7926	0.7961	0.7995	0.8030
0.79	0.8064	0.8099	0.8134	0.8169	0.8204	0.8239	0.8274	0.8310	0.8345	0.8381
0.80	0.8416	0.8452	0.8488	0.8524	0.8560	0.8596	0.8633	0.8669	0.8705	0.8742
0.81	0.8779	0.8816	0.8853	0.8890	0.8927	0.8965	0.9002	0.9040	0.9078	0.9116
0.82	0.9154	0.9192	0.9230	0.9269	0.9307	0.9346	0.9385	0.9424	0.9463	0.9502
0.83	0.9542	0.9581	0.9621	0.9661	0.9701	0.9741	0.9782	0.9822	0.9863	0.9904
0.84	0.9945	0.9986	1.0027	1.0069	1.0110	1.0152	1.0194	1.0237	1.0279	1.0322
0.85	1.0364	1.0407	1.0450	1.0494	1.0537	1.0581	1.0625	1.0669	1.0714	1.0758
0.86	1.0803	1.0848	1.0893	1.0939	1.0985	1.1031	1.1077	1.1123	1.1170	1.1217
0.87	1.1264	1.1311	1.1359	1.1407	1.1455	1.1503	1.1552	1.1601	1.1650	1.1700
0.88	1.1750	1.1800	1.1850	1.1901	1.1952	1.2004	1.2055	1.2107	1.2160	1.2212
0.89	1.2265	1.2319	1.2372	1.2426	1.2481	1.2536	1.2591	1.2646	1.2702	1.2759
0.90	1.2816	1.2873	1.2930	1.2988	1.3047	1.3106	1.3165	1.3225	1.3285	1.3346
0.91	1.3408	1.3469	1.3532	1.3595	1.3658	1.3722	1.3787	1.3852	1.3917	1.3984
0.92	1.4051	1.4118	1.4187	1.4255	1.4325	1.4395	1.4466	1.4538	1.4611	1.4684
0.93	1.4758	1.4833	1.4909	1.4985	1.5063	1.5141	1.5220	1.5301	1.5382	1.5464
0.94	1.5548	1.5632	1.5718	1.5805	1.5893	1.5982	1.6072	1.6164	1.6258	1.6352
0.95	1.6449	1.6546	1.6646	1.6747	1.6849	1.6954	1.7060	1.7169	1.7279	1.7392
0.96	1.7507	1.7624	1.7744	1.7866	1.7991	1.8119	1.8250	1.8384	1.8522	1.8663
0.97	1.8808	1.8957	1.9110	1.9268	1.9431	1.9600	1.9774	1.9954	2.0141	2.0335
0.98	2.0537	2.0749	2.0969	2.1201	2.1444	2.1701	2.1973	2.2262	2.2571	2.2904
0.99	2.3263	2.3656	2.4089	2.4573	2.5121	2.5758	2.6521	2.7478	2.8782	3.0902

Table A-4

Critical values of the $t_{\nu}$ variate $\left(-t_{(\alpha)}=t_{(1-\alpha)}\right)$ (after Diem, 1962, with kind permission of J.R. Geigy, Basel)


$\nu$	$\alpha=.05$	.025	.01	.005
1	6.314	12.706	31.821	63.657
2	2.920	4.303	6.965	9.925
3	2.353	3.182	4.541	5.841
4	2.132	2.776	3.747	4.604
5	2.015	2.571	3.365	4.032
6	1.943	2.447	3.143	3.707
7	1.895	2.365	2.998	3.499
8	1.860	2.306	2.896	3.355
9	1.833	2.262	2.821	3.250
10	1.813	2.228	2.764	3.169
11	1.796	2.201	2.718	3.106
12	1.782	2.179	2.681	3.055
13	1.771	2.160	2.650	3.012
14	1.761	2.145	2.624	2.977
15	1.753	2.131	2.602	2.947


$v$	$\alpha=.05$	. 025	. 01	. 005
16	1.746	2.120	2.583	2.921
17	1.740	2.110	2.567	2.898
18	1.734	2.101	2.552	2.878
19	1.729	2.093	2.539	2.861
20	1.725	2.086	2.528	2.845
21	1.721	2.080	2.518	2.831
22	1.717	2.074	2.508	2.819
23	1.714	2.069	2.500	2.807
24	1.711	2.064	2.492	2.797
25	1.708	2.060.	2.485	2.787
26	1.706	2.056	2.479	2.779
27	1.703	2.052	2.473	2.771
28	1.701	2.048	2.467	2.763
29	1.699	2.045	2.462	2.756
30	1.697	2.042	2.457	2.750
40	1.684	2.021	2.423	2.704
50	1.676	2.009	2.403	2.678
60	1.671	2.000	2.390	2.660
80	1.664	1.990	2.374	2.639
100	1.660	1.984	2.364	2.626
$\infty$	1.645	1.960	2.326	2.576

Critical values of the $\chi_{\nu}^{2}$ variate
Coble $A-5$
, with kind permission of Biometrika Trustees,
of W.H. Freeman and Co., San Francisco © $)$


For values of $v>50$ the $x_{v(1-\alpha)}^{2}$ may be normalized by the transformation

$$
z \simeq\left[\left(\frac{x_{v}^{2}}{v}\right)^{1 / 3}+\frac{2}{9 n}-1\right] \sqrt{\frac{9 n}{2}}
$$

which can be compared with the critical values of $\tilde{z}$.

## Table A-6.1

Critical values of the $F_{\nu_{1}, \nu_{2}}$ variate at the .95 confidence level
(from Merrington and Thompson, 1943, with kind permission of Biometrika Trustees, London)

Degrees of freedom in denominator, $\mathrm{V}_{2}$	Degrees of freedom in numerator, $v_{1}$									
	1	2	3	4	5	6	8	12	24	$\infty$
1	161.4	199.5	215.7	224.6	230.2	234.0	238.9	243.9	249.1	254.3
2	18.51	19.00	19.16	19.25	19.30	19.33	19.37	19.41	19.45	19.50
3	10.13	9.55	9.28	9.12	9.01	8.94	8.85	8.74	8.64	8.53
4	7.71	6.94	6.59	6.39	6.26	6.16	6.04	5.91	5.77	5.63
5	6.61	5.79	5.41	5.19	5.05	4.95	4.82	4.68	4.53	4.36
6	5.99	5.14	4.76	4.53	4.39	4.28	4.15	4.00	3.84	3.67
7	5.59	4.74	4.35	4.12	3.97	3.87	3.73	3.57	3.41	3.23
8	5.32	4.46	4.07	3.84	3.69	3.58	3.44	3.28	3.12	2.93
9	5.12	4.26	3.86	3.63	3.48	3.37	3.23	3.07	2.90	2.71
10	4.96	4.10	3.71	3.48	3.33	3.22	3.07	2.91	2.74	2.54
11	4.84	3.98	3.59	3.36	3.20	3.09	2.95	2.79	2.61	2.40
12	4.75	3.89	3.49	3.26	3.11	3.00	2.85	2.69	2.51	2.30
13	4.67	3.81	3.41	3.18	3.03	2.92	2.77	2.60	2.42	2.21
14	4.60	3.74	3.34	3.11	2.96	2.85	2.70	2.53	2.35	2.13
15	4.54	3.68	3.29	3.06	2.90	2.79	2.64	2.02	2.39	2.07
16	4.49	3.63	3.24	3.01	2.85	2.74	2.59	2.42	2.24	2.01
17	4.45	3.59	3.20	2.96	2.91	2.70	2.55	2.38	2.19	1.96
18	4.41	3.55	3.16	2.93	2.77	2.66	2.51	2.34	2.15	1.92
19	4.38	3.52	3.13	2.90	2.74	2.63	2.48	2.31	2.11	1.88
20	4.35	3.49	3.10	2.87	2.71	2.60	2.45	2.28	2.08	1.84
21	4.32	3.47	3.07	2.84	2.68	2.57	2.42	2.25	2.05	1.81
22	4.30	3.44	3.05	2.82	2.66	2.55	2.40	2.23	2.03	1.78
23	4.28	3.42	3.03	2.80	2.64	2.53	2.37	2.20	2.01	1.76
24	4.26	3.40	3.01	2.78	2.62	2.51	2.36	2.18	1.98	1.73
25	4.24	3.39	2.99	2.76	2.60	2.49	2.34	2.16	1.96	1.71
26	4.23	3.37	2.98	2.74	2.59	2.47	2.32	2.15	1.95	1.69
27	4.21	3.35	2.96	2.73	2.57	2.46	2.31	2.13	1.93	1.67
28	4.20	3.34	2.95	2.71	2.56	2.45	2.29	2.12	1.91	1.65
29	4.18	3.33	2.93	2.70	2.55	2.43	2.28	2.10	1.90	1.64
30	4.17	3.32	2.92	2.69	2.53	2.42	2.27	2.09	1.89	1.62
40	4.08	3.23	2.84	2.61	2.45	2.34	2.18	2.04	1.79	1.51
60	4.00	3.15	2.76	2.53	2.37	2.25	2.10	1.92	1.70	1.39
120	3.92	3.07	2.68	2.45	2.29	2.17	2.02	1.83	1.61	1.25
$\infty$	3.84	3.00	2.60	2.37	2.21	2.10	1.94	1.75	1.52	1.00

## Table A-6.2

Critical values of the $F_{\nu_{1}, \nu_{2}}$ variate at the . 975 confidence level
(from Merrington and Thompson, 1943, with kind permission of Biometrika Trustees, London)

Degrees of freedom in denominator, $\nu_{2}$	Degrees of freedom in numerator, $v_{1}$									
	1	2	3	4	5	6	8	12	24	$\infty$
1	647.8	799.5	864.2	899.6	921.8	937.1	956.7	976.7	997.2	1018
2	38.51	39.00	39.17	39.25	39.30	39.33	39.37	39.41	39.46	39.50
3	17.44	16.04	15.44	15.10	14.88	14.73	14.54	14.34	14.12	13.90
4	12.22	10.65	9.98	9.60	9.36	9.20	8.98	8.75	8.51	8.26
5	10.01	8.43	7.76	7.39	7.15	6.98	6.76	6.52	6.28	6.02
6	8.81	7.26	6.60	6.63	5.99	5.82	5.60	5.37	5.12	4.85
7	8.07	6.54	5.89	5.52	5.29	5.12	4.89	4.67	4.42	4.14
8	7.57	6.06	5.42	5.05	4.82	4.65	4.43	4.20	3.95	3.67
9	7.21	5.71	5.08	4.72	4.48	4.32	4.10	3.87	3.61	3.33
10	6.94	5.46	4.83	4.47	4.24	4.07	3.85	3.62	3.37	3.08
11	6.72	5.26	4.63	4.28	4.04	3.88	3.66	3.43	3.17	2.88
12	6.55	5.10	4.47	4.12	3.89	3.73	3.51	3.28	3.02	2.72
13	6.41	4.97	4.35	4.00	3.77	3.60	3.39	3.15	2.89	2.60
14	6.30	4.86	4.24	3.89	3.66	3.50	3.29	3.05	2.79	2.49
15	6.20	4.77	4.15	3.80	3.58	3.41	3.20	2.96	2.70	2.40
16	6.12	4.69	4.08	3.73	3.50	3.34	3.12	2.89	2.63	2.32
17	6.04	4.62	4.01	3.66	3.44	3.28	3.06	2.82	2.56	2.25
18	5.98	4.56	3.95	3.61	3.38	3.22	3.01	2.77	2.50	2.19
19	5.92	4.51	3.90	3.56	3.33	3.17	2.76	2.72	2.45	2.13
20	5.87	4.46	3.86	3.51	3.29	3.13	2.91	2.68	2.41	2.09
21	5.83	4.42	3.82	3.48	3.25	3.09	2.87	2.64	2.37	2.04
22	5.79	4.38	3.78	3.44	3.22	3.05	2.84	2.60	2.33	2.00
23	5.75	4.35	3.75	3.41	3.18	3.02	2.81	2.57	2.30	1.97
24	5.72	4.32	3.72	3.38	3.15	2.99	2.78	2.54	2.27	1.94
25	5.69	4.29	3.69	3.35	3.13	2.97	2.75	2.51	2.24	1.91
26	5.66	4.27	3.67	3.33	3.10	2.94	2.73	2.49	2.22	1.88
27	5.63	4.24	3.65	3.31	3.08	2.92	2.71	2.47	2.19	1.85
28	5.61	4.22	3.63	3.29	3.06	2.90	2.69	2.45	2.17	1.83
29	5.59	4.20	3.60	3.27	3.04	2.88	2.67	2.43	2.15	1.81
30	5.57	4.18	3.59	3.25	3.03	2.87	2.65	2.41	2.14	1.79
40	5.42	4.05	3.46	3.13	2.90	2.74	2.53	2.29	2.01	1.64
60	5.29	3.93	3.34	3.01	2.79	2.63	2.41	2.17	1.88	1.48
120	5.15	3.80	3.23	2.89	2.67	2.52	2.30	2.05	1.76	1.31
$\infty$	5.02	3.69	3.11	2.79	2.57	2.41	2.19	1.94	1.64	1.00

## Table A-6.3

Critical values of the $F_{V_{1}}, \nu_{2}$ variate at the . 99 confidence level
(from Merrington and Thompson, 1943, with kind permission of Biometrika Trustees, London)

Degrees of freedom in denominator, $v_{2}$	Degrees of freedom in numerator, $v_{1}$									
	1	2	3	4	5	6	8	12	24	$\infty$
1	4052	4999.5	5403	5625	5764	5859	5981	6106	6235	6366
2	98.50	99.00	99.17	99.25	99.30	99.33	99.37	99.42	99.46	99.50
3	34.12	30.82	29.46	28.71	28.24	27.91	27.49	27.05	26.60	26.13
4	21.20	18.00	16.69	16.98	15.52	15.21	14.80	14.37	13.93	13.46
5	16.26	13.27	12.06	11.39	10.97	10.67	10.29	9.89	9.47	9.02
6	13.75	10.92	9.78	9.15	8.75	8.47	8.10	7.72	7.31	6.88
7	12.25	9.55	8.45	7.85	7.46	7.19	6.84	6.47	6.07	5.65
8	11.26	8.65	7.59	7.01	6.63	6.37	6.03	5.67	5.28	4.86
9	10.56	8.02	6.99	6.42	6.06	5.80	5.47	5.11	4.73	4.31
10	10.04	7.56	6.55	5.99	5.64	5.39	5.06	4.71	4.33	3.91
11	9.65	7.21	6.22	5.67	5.32	5.07	4.74	4.40	4.02	3.60
12	9.33	6.93	5.95	5.41	5.06	4.82	4.50	4.16	3.78	3.36
13	9.07	6.70	5.74	5.21	4.86	4.62	4.30	3.96	3.59	3.17
14	8.86	6.51	5.56	5.04	4.69	4.46	4.14	3.80	3.43	3.00
15	8.68	6.36	5.42	4.89	4.56	4.32	4.00	3.67	3.29	2.87
16	8.53	6.23	5.29	4.77	4.44	4.20	3.89	3.55	3.18	2.75
17	8.40	6.11	5.19	4.67	4.34	4.10	3.79	3.46	3.08	2.65
18	8.28	6.01	5.09	4.58	4.25	4.01	3.71	3.37	3.00	2.57
19	8.19	5.93	5.01	4.50	4.17	3.94	3.63	3.30	2.92	2.49
20	8.10	5.85	4.94	4.43	4.10	3.87	3.56	3.23	2.86	2.42
21	8.02	5.75	4.87	4.37	4.04	3.81	3.51	3.17	2.80	2.36
22	7.95	5.72	4.82	4.31	3.99	3.76	3.45	3.12	2.75	2.31
23	7.88	5.66	4.76	4.26	3.94	3.71	3.41	3.07	2.70	2.26
24	7.82	5.61	4.72	4.22	3.90	3.67	3.36	3.03	2.66	2.21
25	7.77	5.57	4.68	4.18	3.86	3.63	3.32	2.99	2.62	2.17
26	7.72	5.53	4.64	4.14	3.82	3.59	3.29	2.96	2.58	2.13
27	7.68	5.49	4.60	4.11	3.78	3.56	3.26	2.93	2.55	2.10
28	7.64	5.45	4.57	4.07	3.75	3.53	3.23	2.90	2.52	2.06
29	7.60	5.42	4.54	4.04	3.73	3.50	3.20	2.87	2.49	2.03
30	7.56	5.39	4.51	4.02	3.70	3.47	3.17	2.84	2.47	2.01
40	7.31	5.18	4.31	3.83	3.51	3.29	2.99	2.66	2.29	1.80
60	7.08	4.98	4.13	3.65	3.34	3.12	2.82	2.50	2.12	1.60
120	6.85	4.79	3.95	3.48	3.17	2.96	2.66	2.34	1.95	1.38
$\infty$	6.63	4.61	3.78	3.32	3.02	2.80	2.51	2.18	1.79	1.00

## Table A-7

Critical values of the Kolmogoroff-Smirnov test
(from Miller, 1956, with kind permission of the American Statistical Association, Washington, D.C.)

$\lambda \alpha$	0.2	0.1	0.05	0.02	0.01
1	.90000	.95000	.97500	.99000	.99500
2	.68377	.77639	.84189	.90000	.92929
3	.56481	.63604	.70760	.78456	.82900
4	.49265	.56522	.62394	.68887	.73424
5	.44698	.50945	.56328	.62718	.66853
6	.41037	.46799	.51926	.57741	.61661
7	.38148	.43607	.48342	.53844	.57581
8	.35831	.40962	.45427	.50654	.54179
9	.33910	.38746	.43001	.47960	.51332
10	.32260	.36866	.40925	.45662	.48893
11	.30829	.35242	.39122	.43670	.46770
12	.29577	.33815	.37543	.41918	.44905
13	.28470	.32549	.36143	.40362	.43247
14	.27481	.31417	.34890	.38970	.41762
15	.26588	.30397	.33760	.37713	.40420
16	.25778	.29472	.32733	.36571	.39201
17	.25039	.28627	.31796	.35528	.38086
18	.2460	.27851	.30936	.34569	.37062
19	.23735	.27136	.30143	.33685	.36117
20	.23156	.26473	.29408	.32866	.35241
21	.22617	.25858	.28724	.32104	.34427
22	.22115	.25283	.28087	.31394	.33666
23	.21645	.24746	.27490	.30728	.32954
24	.21205	.24242	.26931	.30104	.32286
25	.20790	.23768	.26404	.29516	.31657
26	.20399	.23320	.25907	.28962	.31064
27	.20030	.22898	.25438	.28438	.30502
28	.19680	.22497	.24993	.27942	.29971
29	.19348	.22117	.24571	.27771	.29466
30	.19032	.21756	.24170	.27023	.28987
31	.18732	.21412	.23788	.26596	.28530
32	.18445	.21085	.23424	.26189	.28094
33	.18171	.20771	.23076	.25801	.27677
34	.17909	.20472	.22743	.25429	.27279
35	.17659	.20185	.22425	.25073	.26897
36	.17418	.19910	.22119	.24732	.26532
37	.17188	.19646	.21826	.24404	.26180
38	.16966	.19392	.21544	.24089	.25843
39	.16753	.19148	.21273	.23786	.25518
40	.16547	.18913	.21012	.23494	.25205
41	.16349	.18687	.20760	.23213	.24904
42	.16158	.18468	.20517	.22941	.24613
43	.15974	.18257	.20283	.22679	.24332
44	.15796	.18053	.20056	.22426	.24060
45	.15623	.17856	.19837	.22181	.23798
46	.15457	.17665	.19625	.21944	.23544
47	.15295	.17481	.19420	.21715	.23298
48	.15139	.17302	.19221	.21493	.23059
50	.14987	.17128	.19028	.21277	.22828
14840	.16959	.18841	.21068	.22604	


$n$	0.2	0.1	0.05	0.02	0.01
51	. 14697	. 16796	. 18659	. 20864	. 22386
52	. 14558	. 16637	. 18482	. 20667	. 22174
53	. 14423	. 16483	. 18311	. 20475	. 21968
54	. 14292	. 16332	. 18144	. 20289	. 21768
55	. 14164	. 16186	. 17981	. 20107	. 21574
56	. 14040	. 16044	. 17823	. 19930	. 21384
57	. 13919	. 15906	. 17669	. 19758	. 21199
58	. 13801	. 15771	. 17519	. 19590	. 21019
59	. 13686	. 15639	. 17373	. 19427	. 20844
60	. 13573	. 15511	. 17231	. 19267	. 20673
61	. 13464	. 15385	. 17091	. 19112	. 20506
62	. 13357	. 15263	. 16956	. 18960	. 20343
63	. 13253	. 15144	. 16823	. 18812	. 20184
64	. 13151	. 15027	. 16693	. 18667	. 20029
65	. 13052	. 14913	. 16567	. 18525	. 19877
66	. 12954	. 14802	. 16443	. 18387	. 19729
67	. 12859	. 14693	. 16322	. 18252	. 19584
68	. 12766	. 14587	. 16204	. 18119	. 19442
69	. 12675	. 14483	. 16088	. 17990	. 19303
70	. 12586	. 14381	. 15975	. 17863	. 19167
71	. 12499	. 14281	. 15864	. 17739	. 19034
72	. 12413	. 14183	. 15755	. 17618	. 18903
73	. 12329	. 14087	. 15649	. 17498	. 18776
74	. 12247	. 13993	. 15544	. 17382	. 18650
75	. 12167	. 13901	. 15442	. 17268	. 18528
76	. 12088	. 13811	. 15342	. 17155	. 18408
77	. 12011	. 13723	. 15244	. 17045	. 18290
78	. 11935	. 13636	. 15147	. 16938	. 18174
79	. 11860	. 13551	. 15052	. 16832	. 18060
80	. 11787	. 13467	. 14960	. 16728	. 17949
81	. 11716	. 13385	. 14868	. 16626	. 17840
82	. 11645	. 13305	. 14779	. 16526	. 17732
83	. 11576	. 13226	. 14691	. 16428	. 17627
84	. 11508	. 13148	. 14605	. 16331	. 17523
85	. 11442	. 13072	. 14520	. 16236	. 17421
86	. 11376	. 12997	. 14437	. 16143	. 17321
87	. 11311	. 12923	. 14355	. 16051	. 17223
88	. 11248	. 12850	. 14274	. 15961	. 17126
89	. 11186	. 12779	. 14195	. 15873	. 17031
90	. 11125	. 12709	. 14117	. 15786	. 16938
91	. 11064	. 12640	. 14040	. 15700	. 16846
92	. 11005	. 12572	. 13965	. 15616	. 16755
93	. 10947	. 12506	. 13891	. 15533	. 16666
94	. 10889	. 12440	. 13818	. 15451	. 16579
95	. 10833	. 12375	. 13746	. 15371	. 16493
96	. 10777	. 12312	. 13675	. 15291	. 16408
97	. 10722	. 12249	. 13606	. 15214	. 16324
98	. 10668	. 12187	. 13537	. 15137	. 16242
99	. 10615	. 12126	. 13469	. 15061	. 16161
100	. 10563	. 12067	. 13403	. 14987	. 16081

Table A-8

Critical values of the Mann-Whitney-Wilcoxon $U$-test for $\alpha=.025$ (upper line) and $\alpha=.005$ (lower line) (after Owen, 1962, from Stange and Henning, 1966, with kind permission of Springer Verlag, Berlin)

$n_{1}$	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
3	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8
	-	-	-	-	0	0	0	1	1	1	2	2	2	2	3	3
4	1	2	3	4	4	5	6	7	8	9	10	11	11	12	13	14
	-	0	0	1	1	2	2	3	3	4	5	5	6	6	7	8
5	2	3	5	6	7	8	9	11	12	13	14	15	17	18	19	20
	0	1	1	2	3	4	5	6	7	7	8	9	10	11	12	13
6	3	5	6	8	10	11	13	14	16	17	19	21	22	24	25	27
	1	2	3	4	5	6	7	9	10	11	12	13	15	16	17	18
7	5	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34
	1	3	4	6	7	9	10	12	13	15	16	18	19	21	22	24
8	6	8	10	13	15	17	19	22	24	26	29	31	34	36	38	41
	2	4	6	7	9	11	13	15	17	18	20	22	24	26	28	30
9	7	10	12	15	17	20	23	26	28	31	34	37	39	42	45	48
	3	5	7	9	11	13	16	18	20	22	24	27	29	31	33	36
10	8	11	14	17	20	23	26	29	33	36	39	42	45	48	52	55
	4	6	9	11	13	16	18	21	24	26	29	31	34	37	39	42
11	9	13	16	19	23	26	30	33	37	40	44	47	51	55	58	62
	5	7	10	13	16	18	21	24	27	30	33	36	39	42	45	48
12	11	14	18	22	26	29	33	37	41	45	49	53	57	61	65	69
	6	9	12	15	18	21	24	27	31	34	37	41	44	47	51	54
13	12	16	20	24	28	33	37	41	45	50	54	59	63	67	72	76
	7	10	13	17	20	24	27	31	34	38	42	45	49	53	57	60
14	13	17	22	26	31	36	40	45	50	55	59	64	69	74	78	83
.	7	11	15	18	22	26	30	34	38	42	46	50	54	58	63	67
15	14	19	24	29	34	39	44	49	54	59	64	70	75	80	85	90
	8	12	16	20	24	29	33	37	42	46	51	55	60	64	69	73
16	15	21	26	31	37	42	47	53	59	64	70	75	81	86	92	98
	9	13	18	22	27	31	36	41	45	50	55	60	65	70	74	79
17	17	22	28	34	39	45	51	57	63	69	75	81	87	93	99	105
	10	15	19	24	29	34	39	44	49	54	60	65	70	75	81	86
18	18	24	30	36	42	48	55	61	67	74	80	86	93	99	106	112
	11	16	21	26	31	37	42	47	53	58	64	70	75	81	87	92
19.	19	25	32	38	45	52	58	65	72	78	85	92	99	106	113	119
	12	17	22	28	33	39	45	51	57	63	69	74	81	87	93	99
20	20	27	34	41	48	55	62	69	76	83	90	98	105	112	119	127
	13	18	24	30	36	42	48	54	60	67	73	79	86	92	99	105

## Table A-9

Acceptance intervals $r_{1}, r_{2}$ for the Run test $r$; if only one limit exists, for the other a blank is left $\left(n_{1} \leqslant n_{2}, n_{2} \leqslant 20\right)$
(after Swed and Eisenhart, 1943, from Diem; 1962, with kind permission of J.R. Geigy,
Basel, and Institute of Mathematical Statistics, Hayward, CA, USAJ

$\bigcirc$	. 05	. 01
$n_{1}=2$		
12-20	2-	
$n_{1}=3$		
$\begin{array}{r} 6-11 \\ 12-14 \\ 15-20 \end{array}$	$\begin{aligned} & 2- \\ & 2- \\ & 2- \end{aligned}$	$\begin{aligned} & 2- \\ & 2- \end{aligned}$
$n_{1}=4$		
$\begin{gathered} 5,6 \\ 7 \\ 8-14 \\ 15 \\ 16-20 \end{gathered}$	$\begin{aligned} & 2-9 \\ & 2- \\ & 3- \\ & 3- \\ & 4- \end{aligned}$	$\begin{aligned} & 2- \\ & 3- \\ & 3- \end{aligned}$
$n_{1}=5$		
$\begin{gathered} 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11-17 \\ 18-20 \end{gathered}$	$\begin{aligned} & 2-10 \\ & 3-10 \\ & 3-11 \\ & 3-11 \\ & 3- \\ & 3- \\ & 4- \\ & 5- \end{aligned}$	$\begin{aligned} & 2- \\ & 2-11 \\ & 2- \\ & 2- \\ & 3- \\ & 3- \\ & 4- \end{aligned}$
$n_{1}=6$		
$\begin{gathered} 6 \\ 7 \\ 8 \\ 9-12 \\ 13 \\ 14-18 \\ 19,20 \end{gathered}$	$\begin{aligned} & 3-11 \\ & 3-12 \\ & 3-12 \\ & 4-13 \\ & 5- \\ & 5- \\ & 6- \end{aligned}$	$\begin{aligned} & 2-12 \\ & 2-13 \\ & 3-13 \\ & 3- \\ & 3- \\ & 4- \\ & 4- \end{aligned}$


$\mathrm{n}_{2}$	. 05	. 01
$n_{1}=7$		
7	3-13	3-13
8	4-13	3-14
9	4-14	3-15
10	5-14	3-15
11	5-14	4-15
12	5-14	4-
13, 14	5-15	4-
15	6-15	4-
16-20	6-	5-
$\mathrm{n}_{1}=8$		
8	4-14	3-15
9	5-14	3-15
10,11	5-15	4-16
12	6-16	4-17
13,14	6-16	5-17
15	6-16	5-
16	6-17	5-
17	7-17	5-
18-20	7-17	6-
$\mathrm{n}_{1}=9$		
9	5-15	4-16
10	5-16	4-17
11	6-16	5-17
12	6-16	5-18
13	6-17	5-18
14	7-17	5-18
15-17	7-18	6-19
18,19	8-18	6-
20	8-18	7-
$n_{1}=10$		
10	6-16	5-17
11	6-17	5-18
12	7-17	5-19
13	7-18	5-19
14	7-18	6-19
15	7-18	6-20
16	8-19	6-20
17	8-19	7-20
18	8-19	7-21
19	8-20	7-21
20	9-20	7-21

Table A-9 (continued)

$n_{2}$	. 05	. 01
$n_{1}=11$		
11	7-17	5-19
12	7-18	6-19
13	7-19	6-20
14	8-19	6-20
15	8-19	7-21
16	8-20	7-21
17, 18	9-20	7-22
19, 20	9-21	8-22
$\mathrm{n}_{1}=12$		
12	7-19	6-20
13	8-19	6-21
14	8-20	7-21
15	8-20	7-22
16	9-21	7-22
17	9-21	8-22
18	9-21	8-23
19, 20	10-22	8-23
$n_{1}=13$		
13	8-20	7-21
14	9-20	7-22
15	9-21	7-22
16	9-21	8-23
17	10-22	8-23
18	10-22	8-24
19, 20	10-23	9-24
$n_{1}=14$		
14	9-21	7-23
15	9-22	8-23
16	10-22	8-24
17	10-23	8-24
18	10-23	9-25
19	11-23	9-25
20	11-24	9-25


$n_{2}$	. 05	. 01
$n_{1}=15$		
15	10-22	8-24
16	10-23	9-24
17	11-23	9-25
18	11-24	9-25
19	11-24	10-26
20	12-25	10-26
$n_{1}=16$		
16	11-23	9-25
17	11-24	9-26
18	11-25	10-26
19, 20	12-25	10-27
$\mathrm{n}_{1}=17$		
17	11-25	10-26
18	12-25	10-27
19	12-26	10-27
20	13-26	11-28
$\mathrm{n}_{1}=18$		
18	12-26	11-27
19	13-26	11-28
20	13-27	11-29
$\mathrm{n}_{1}=19$		
19	13-27	11-29
20	13-27	12-29
$\mathrm{n}_{1}=20$		
20	14-28	12-30

Table A-10

Critical values of Wilcoxon's pair difference test
(after Wilcoxon and Wilcox, 1964, from Stange and Henning, 1966, with kind permission of Springer-Verlag, Berlin)


Table A-11

Critical values of the test $\lambda_{n}=\frac{\bar{x}-\mu}{R}$ (from Lord, 1947, with kind permission of Biometrika Trustees, London)


## Table A-12

Critical values of the studentized range $Q_{\nu}, k$
(from Harter, 1960, with kind permission of the Institute of Mathematical Statistics, Hayward, CA, USA)
$\alpha=.05$


$\alpha=.05$


$k$   $\nu$		20	22	24	26	28	30	32	34
1	59.56	60.91	62.12	63.22	64.23	65.15	66.01	66.81	67.56
2	16.77	17.13	17.45	17.75	18.02	18.27	18.50	18.72	18.92
3	11.24	11.47	11.68	11.87	12.05	12.21	12.36	12.50	12.63
4	9.233	9.418	9.548	9.736	9.875	10.00	10.12	12.23	10.34
5	8.208	8.368	8.512	8.643	8.764	8.875	8.979	9.075	9.165
6	7.587	7.730	7.861	7.979	8.088	8.189	8.283	8.370	8.452
7	7.170	7.303	7.423	7.533	7.634	7.728	7.814	7.895	7.972
8	6.870	6.995	7.109	7.212	7.307	7.395	7.477	7.554	7.625
9	6.644	6.763	6.871	6.970	7.061	7.145	7.222	7.295	7.363
10	6.467	6.582	6.686	6.781	6.868	6.948	7.023	7.093	7.159
11	6.326	6.436	6.536	6.628	6.712	6.790	6.863	6.930	6.994
12	6.209	6.317	6.414	6.503	6.585	6.660	6.731	6.796	6.858
13	6.112	6.217	6.312	6.398	6.478	6.551	6.620	6.684	6.744
14	6.029	6.132	6.224	6.309	6.387	6.459	6.526	6.588	6.647
15	5.958	6.059	6.149	6.233	6.309	6.379	6.445	6.506	6.564
16	5.897	5.995	6.084	6.166	6.241	6.310	6.374	6.434	6.491
17	5.842	5.940	6.027	6.107	6.181	6.249	6.313	6.372	6.427
18	5.794	5.890	5.977	6.055	6.128	6.195	6.258	6.316	6.371
19	5.752	5.846	5.932	6.009	6.081	6.147	6.209	6.267	6.321
20	5.714	5.807	5.891	5.968	6.039	6.104	6.165	6.222	6.275
24	5.594	5.683	5.764	5.838	5.906	5.968	6.027	6.081	6.132
30	5.475	5.561	5.638	5.709	5.774	5.833	5.889	5.941	5.990
40	5.358	5.439	5.513	5.581	5.642	5.700	5.753	5.803	5.849
60	5.241	5.319	5.389	5.453	5.512	5.566	5.617	5.664	5.708
120	5.126	5.200	5.266	5.327	5.382	5.434	5.481	5.526	5.568
$\infty$	5.012	5.081	5.144	5.201	5.253	5.301	5.346	5.388	5.427

$\alpha=.01$
36

$k$								20	22
$\nu$	20	24	26	28	30	32	34	36	
1	298.0	304.7	310.8	316.3	321.3	326.0	330.3	334.3	338.0
2	37.95	38.76	39.49	40.15	40.76	41.32	41.84	42.33	42.78
3	19.77	20.17	20.53	20.86	21.16	21.44	21.70	21.95	22.17
4	14.40	14.68	14.93	15.16	15.37	15.57	15.75	15.92	16.08
5	11.93	12.16	12.36	12.54	12.71	12.87	13.02	13.15	13.28
6	10.54	10.73	10.91	11.06	11.21	11.34	11.47	11.58	11.69
7	9.646	9.815	9.970	10.11	10.24	10.36	10.47	10.58	10.67
8	9.027	9.182	8.322	9.450	9.569	9.678	9.779	9.874	9.964
9	8.573	8.717	8.847	8.966	9.075	9.177	9.271	9.360	9.443
10	8.226	8.361	8.483	8.595	8.698	8.794	8.883	8.966	9.044
11	7.952	8.080	8.196	8.303	8.400	8.491	8.575	8.654	8.728
12	7.731	7.853	7.964	8.066	8.159	8.246	8.327	8.402	8.473
13	7.548	7.665	7.772	7.870	7.960	8.043	8.121	8.193	8.262
14	7.395	7.508	7.611	7.705	7.792	7.873	7.948	8.018	8.084
15	7.264	7.374	7.474	7.566	7.650	7.728	7.800	7.869	7.932
16	7.152	7.258	7.356	7.455	7.527	7.602	7.673	7.739	7.802
17	7.053	7.158	7.253	7.340	7.420	7.493	7.563	7.627	7.687
18	6.968	7.070	7.163	7.247	7.325	7.398	7.465	7.528	7.587
19	6.891	6.992	7.082	7.166	7.242	7.313	7.379	7.440	7.498
20	6.823	6.922	7.011	7.092	7.168	7.237	7.302	7.362	7.419
24	6.612	6.705	6.789	6.865	6.936	7.001	7.062	7.119	7.173
30	6.407	6.494	6.572	6.644	6.710	6.772	6.828	6.881	6.932
40	6.209	6.289	6.362	6.429	6.490	6.547	6.600	6.650	6.697
60	6.015	6.090	6.158	6.220	6.227	6.330	6.378	6.424	6.467
120	5.827	5.897	5.959	6.016	6.069	6.117	6.162	6.204	6.244
$\infty$	5.645	5.709	5.766	5.818	5.866	5.911	5.952	5.990	6.026

Table A-12 (continued)
$\alpha=.05$

	38	40	50	60	70	80	90	100
1	68.26	68.92	71.73	73.97	75.82	77.40	78.77	79.98
2	19.11	19.28	20.05	20.66	21.16	21.59	21.96	22.29
3	12.75	12.87	13.36	13.76	14.08	14.36	14.61	14.82
4	10.44	10.53	10.93	11.24	11.51	11.73	11.92	12.09
5	9.250	9.330	9.674	9.949	10.18	10.38	10.54	10.69
6	8.529	8.601	8.913	9.163	9.370	9.548	9.702	9.839
7	8.043	8.110	8.400	8.632	8.824	8.989	9.133	9.261
8	7.693	7.756	8.029	8.248	8.430	8.586	8.722	8.843
9	7.428	7.488	7.749	7.958	8.132	8.281	8.410	8.526
10	7.220	7.279	7.529	7.730	7.897	8.041	8.166	8.276
11	7.053	7.110	7.352	7.546	7.708	7.847	7.968	8.075
12	6.916	6.970	7.205	7.394	7.552	7.687	7.804	7.909
13	6.800	6.854	7.083	7.267	7.421	7.552	7.667	7.769
14	6.702	6.754	6.979	7.159	7.309	7.438	7.550	7.650
15	6.618	6.669	6.888	7.065	7.212	7.339	7.449	7.546
16	6.544	6.594	6.810	6.984	7.128	7.252	7.360	7.457
17	6.479	6.529	6.741	6.912	7.054	7.176	7.283	7.377
18	6.422	6.471	6.680	6.848	6.989	7.109	7.213	7.307
19	6.371	6.419	6.626	6.792	6.930	7.048	7.152	7.244
20	6.325	6.373	6.576	6.740	6.877	6.994	7.097	7.187
24	6.181	6.226	6.421	6.579	6.710	6.822	6.920	7.008
30	6.037	6.080	6.267	6.417	6.543	6.650	6.744	6.827
40	5.893	5.934	6.112	6.255	6.375	6.477	6.566	6.645
60	5.750	5.789	5.958	6.093	6.206	6.303	6.387	6.462
120	5.607	5.644	5.802	5.929	6.035	6.126	6.205	6.275
$\infty$	5.463	5.498	5.646	5.764	5.863	5.947	6.020	6.085

$\alpha=.01$

	38	40	50	60	70	80	90	100
1	341.5	344.8	358.9	370.1	379.4	387.3	394.1	400.1
2	43.21	43.61	45.33	46.70	47.83	48.80	49.64	50.38
3	22.39	22.59	23.45	24.13	24.71	25.19	25.62	25.99
4	16.23	16.37	16.98	17.46	17.86	18.20	18.50	18.77
5	13.40	13.52	14.00	14.39	14.72	14.99	15.23	15.45
6	11.80	11.90	12.31	12.65	12.92	13.16	13.37	13.55
7	10.77	10.85	11.23	11.52	11.77	11.99	12.17	12.34
8	10.05	10.13	10.47	10.75	10.97	11.17	11.34	11.49
9	9.521	9.594	9.912	10.17	10.38	10.57	10.73	10.87
10	9.117	9.187	9.486	9.726	9.927	10.10	10.25	10.39
11	8.798	8.864	9.148	9.377	9.568	9.732	9.875	10.00
12	8.539	8.603	8.875	9.094	9.277	9.434	9.571	9.693
13	8.326	8.387	8.648	8.859	9.035	9.187	9.318	9.436
14	8.146	8.204	8.457	8.661	8.832	8.978	9.106	9.219
15	7.992	8.049	8.295	8.492	8.658	8.800	8.924	9.035
16	7.860	7.916	8.154	8.347	8.507	8.646	8.767	8.874
17	7.745	7.799	8.031	8.219	8.377	8.511	8.630	8.735
18	7.643	7.696	7.924	8.107	8.261	8.393	8.508	8.611
19	7.553	7.605	7.828	8.008	8.159	8.288	8.401	8.502
20	4.473	7.523	7.742	7.919	8.067	8,194	8.305	8.404
24	7.223	7.270	7.476	7,642	7.780	7.900	8.004	8.097
30	6.978	7.023	7.215	7.370	7.500	7.611	7.709	7.796
40	6.740	6.782	6.960	7.104	7.225	7.328	7.419	7.500
60	6.507	6.546	6.710	6.843	6.954	7.050	7.133	7.207
120	6.281	6.316	6.467	6.588	6.689	6.776	6.852	6.919
$\infty$	6.060	6.092	6.228	6.338	6.429	6.507	6.575	6.636

## Table A-13

Critical values of $F_{\max }$ for $\alpha=.05$ (upper line) and $\alpha=.01$ (lower line) (from David, 1952, with kind permission of Biometrika Trustees, London)


Table A-14
Critical values of Spearman's and Kendall's rank correlation coefficients (from Stange and Henning, 1968, with kind permission of Springer Verlag, Berlin)

	Spearman's $\left\|r_{s(1-\alpha)}\right\|$			Kendall's $\left\|\tau_{(1-\alpha)}\right\|$		
$n$	.10	.05	.01	.10	.05	.01
4	1	-	-	1	-	-
5	.90	1	-	.80	1	-
6	.83	.89	1	.73	.87	1
7	.71	.79	.93	.62	.71	.91
8	.64	.74	.88	.57	.64	.79
9	.60	.70	.83	.50	.56	.72
10	.56	.66	.79	.47	.51	.64

Table A-15
Criticel values of Dixon's test for outliers $r_{n}$ (after Dixon, 1951, from Dunn and Clark, 1974, with kind permission of Wiley and Sons, New York)

$1-\alpha$	.95	.99	.995
3	.941	.988	.994
4	.765	.889	.926
5	.642	.780	.821
6	.500	.698	.740
7	.507	.637	.680
8	.468	.590	.634
9	.437	.555	.598
10	.412	.527	.568
11	.392	.502	.542
12	.376	.482	.522
13	.361	.465	.503
14	.349	.450	.488
15	.329	.438	.475
16	.320	.416	.463
17	.313	.407	.452
18	.306	.398	.442
19	.300	.391	.433
20	.295	.384	.425
21	.290	.378	.418
22	.285	.372	.411
23	.281	.367	.404
24	.277	.362	.399
25	.260	.341	.372
30			

Critical values of Grubbs' test for outliers $T_{n}$ (from Grubbs, 1969, with kind permission of American Statistical Association, Washington, D.C.)

$\alpha$	.05	.025	.001
3	1.15	1.15	1.15
4	1.46	1.48	1.49
5	1.67	1.71	1.75
6	1.82	1.89	1.94
7	1.94	2.02	2.10
8	2.03	2.13	2.22
9	2.11	2.21	2.32
10	2.18	2.29	2.41
11	2.23	2.36	2.48
12	2.29	2.41	2.55
13	2.33	2.46	2.61
14	2.37	2.51	2.66
15	2.41	2.55	2.71
16	2.44	2.59	2.75
17	2.47	2.62	2.79
18	2.50	2.65	2.82
19	2.53	2.68	2.85
20	2.56	2.71	2.88
21	2.58	2.73	2.91
22	2.60	2.76	2.94
23	2.62	2.78	2.96
24	2.64	2.80	2.99
25	2.66	2.82	3.01
30	2.75	2.91	
50	2.96	3.13	
100	3.21	3.38	

Table A-17

Critical values of $Z_{n}=\frac{R}{s}$ for outliers (after David et al., 1954)


## Table A-18

Critical values of the mean successive difference test $\eta_{n}^{2}$ and of the serial correlation coefficient $R_{h \cdot n}$ (underlined values are negative) (from Diem, 1962, with kind permission of J.R. Geigy, Basel)

$n$	$\eta_{n}^{2}(\alpha)-\eta_{n}^{2}(1-\alpha)$		$R_{h \cdot n(\alpha)}-R_{h \cdot n(1-\alpha)}$	
	$\alpha=.05$	$\alpha=.01$	$\alpha=.05$	$\alpha=.01$
4	. $780-3.220$	. $626-3.374$		
5	. $820-3.180$	. $538-3.462$	. $735-.253$	. $798-.297$
6	. $890-3.110$	. $561-3.439$	. $708-.345$	. $8663-.447$
7	. $936-3.064$	. $614-3.386$	$\underline{.674}-.370$	. 799 - . 510
8	. $982-3.018$	. $663-3.337$	. 625 - . 371	$\underline{.764}-.531$
9	1.024-2.976	. $709-3.291$	$\underline{.593}-.366$	$\underline{.737-.533}$
10	1.062-2.938	. $752-3.248$	$\underline{.564}-.360$	$\underline{.705}-.525$
11	$1.096-2.904$	. $791-3.209$	. 539 - . 353	. $679-.515$
12	$1.128-2.872$	. $828-3.172$	. $516-.348$	. $655-.505$
13	$1.156-2.844$	. $862-3.138$	$\underline{.497}-.341$	$\underline{.634}-.495$
14	1.182-2.818	. $893-3.107$	$\underline{.479}-.335$	. 615 - . 485
15	$1.205-2.795$	. $922-3.078$	$\underline{.462}-.328$	$\underline{.597}-.475$
16	$1.227-2.773$	. $949-3.051$	. 447 - . 322	. $580-.465$
17	$1.247-2.753$	. $974-3.026$	. $434-.316$	. $564-.456$
18	$1.266-2.734$	. $998-3.002$	$\underline{.421}-.310$	$\underline{.550}-.448$
19	$1.283-2.717$	$1.020-2.980$	$\underline{.410}-.304$	$\underline{.536}-.440$
20	$1.300-2.700$	$1.041-2.959$	$\underline{.399}-.299$	$\underline{.524}-.432$
21	$1.315-2.685$	$1.060-2.940$	. 389 - . 294	. $512-.424$
22	$1.329-2.671$	1.078-2.922	. 380 - . 289	. $502-.417$
23	$1.342-2.658$	$1.096-2.904$	$\underline{.372}-.285$	. $491-.411$
24	$1.355-2.645$	$1.112-2.888$	. $3.364-.280$	$\underline{.482}-.404$
25	$1.367-2.633$	$1.128-2.872$	$\underline{.356}$ - . 276	$\underline{.473}-.398$
30	$1.418-2.582$	$1.195-2.805$	. $325-.257$	. $433-.370$
35	1.458-2.542	1.248-2.752	$\underline{.300}-.242$	$\underline{.402}-.348$
40	1.492-2.508	$1.293-2.707$	. 279 - . 229	$\underline{.377}$ - . 330
45	1.521-2.479	$1.332-2.668$	$\underline{.262}-.218$	$\underline{.356}-.314$
50	1.544-2.456	$1.363-2.637$	$\underline{.248}-.208$	$\underline{.338}-.300$
75	$1.625-2.375$	$1.471-2.529$	. $199-.173$	. $276-.250$
100	1.674-2.326	$1.539-2.461$	$\underline{.175}-.154$	. $243-.222$
200	1.768-2.232	$1.673-2.327$	$\underline{.121}-.111$	. $170-.160$
1000 $\infty$	$2.000-2.000$	$2.000-2.000$	$\underline{.053}-.051$	$\underline{.075}-.073$

## Table A-19

The probit transformation $Y\left(x_{j}\right)$
(from Finney, 1971, with kind permission of C. Griffin, High Wycombe and London)

Cumulated   frequencies   $F\left(x_{j}\right)$	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.00	-	2.67	2.95	3.12	3.25	3.36	3.45	3.52	3.59	3.66
0.10	3.72	3.77	3.82	3.87	3.92	3.96	4.01	4.05	4.08	4.12
0.20	4.16	4.19	4.23	4.26	4.29	4.33	4.36	4.39	4.42	4.45
0.30	4.48	4.50	4.53	4.56	4.59	4.61	4.64	4.67	4.69	4.72
0.40	4.75	4.77	4.80	4.82	4.85	4.87	4.90	4.92	4.95	4.97
0.50	5.00	5.03	5.05	5.08	5.10	5.13	5.15	5.18	5.20	5.23
0.60	5.25	5.28	5.31	5.33	5.36	5.39	5.41	5.44	5.47	5.50
0.70	5.52	5.55	5.58	5.61	5.64	5.67	5.71	5.74	5.77	5.81
0.80	5.84	5.88	5.92	5.95	5.99	6.04	6.08	6.13	6.18	6.23
0.90	6.28	6.34	6.41	6.48	6.55	6.64	6.75	6.88	7.05	7.33


Cumulated   frequencies   $F\left(x_{j}\right)$	0.000	0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009
0.97	6.88	6.90	6.91	6.93	6.94	6.96	6.98	7.00	7.01	7.03
0.98	7.05	7.07	7.10	7.12	7.14	7.17	7.20	7.23	7.26	7.29
0.99	7.33	7.37	7.41	7.46	7.51	7.58	7.65	7.75	7.88	8.09

Table A-20
Minimum and maximum working probits, range, and weighting coefficients (from Finney, 1971, with kind permission of C. Griffin, High Wycombe and London)

Expected probit $Y^{\prime}\left(x_{j}\right)$	Minimum working probit Yo	$\underset{A}{\text { Range }}$	Maximum working probit $Y_{1}$	Expected probit $Y^{\prime}\left(x_{j}\right)$	Weighting coefficient w
1.1	0.8579	5034.	9.1421	8.9	. 00082
1.2	0.9522	3425.	9.0478	8.8	. 00118
1.3	1.0462	2354.	8.9538	8.7	. 00167
1.4	1.1400	1634.	8.8600	8.6	. 00235
1.5	1.2334	1146.	8.7666	8.5	. 00327
1.6	1.3266	811.5	8.6734	8.4	. 00451
1.7	1.4194	580.5	8.5806	8.3	. 00614
1.8	1.5118	419.4	8.4882	8.2	. 00828
1.9	1.6038	306.1	8.3962	8.1	. 01104
2.0	1.6954	225.6	8.3046	8.0	. 01457
2.1	1.7866	168.00	8.2134	7.9	. 01903
2.2	1.8772	126.34	8.1228	7.8	. 02458
2.3	1.9673	95.96	8.0327	7.7	. 03143
2.4	2.0568	73.62	7.9432	7.6	. 03977
2.5	2.1457	57.05	7.8543	7.5	. 04979
2.6	2.2339	44.654	7.7661	7.4	. 06168
2.7	2.3214	35.302	7.6786	7.3	. 07564
2.8	2.4081	28.189	7.5919	7.2	. 09179
2.9	2.4938	22.736	7.5062	7.1	. 11026
3.0	2.5786	18.522	7.4214	7.0	. 13112
3.1	2.6624	15.2402	7.3376	6.9	. 15436
3.2	2.7449	12.6662	7.2551	6.8	. 17994
3.3	2.8261	10.6327	7.1739	6.7	. 20774
3.4	2.9060	9.0154	7.0940	6.6	. 23753
3.5	2.9842	7.7210	7.0158	6.5	. 26907
3.6	3.0606	6.6788	6.9394	6.4	. 30199
3.7	3.1351	5.8354	6.8649	6.3	. 33589
3.8	3.2074	5.1497	6.7926	6.2	. 37031
3.9	3.2773	4.5903	6.7227	6.1	. 40474
4.0	3.3443	4.1327	6.6557	6.0	. 43863
4.1	3.4083	3.7582	6.5917	5.9	. 47144
4.2	3.4687	3.4519	6.5313	5.8	. 50260
4.3	3.5251	3.2025	6.4749	5.7	. 53159
4.4	3.5770	3.0010	6.4230	5.6	. 55788
4.5	3.6236	2.8404	6.3764	5.5	. 58099
4.6	3.6643	2.7154	6.3357	5.4	. 60052
4.7	3.6982	2.6220	6.3018	5.3	. 61609
4.8	3.7241	2.5573	6.2759	5.2	. 62742
4.9	3.7407	2.5192	6.2593	5.1	. 63431
5.0	3.7467	2.5066	6.2533	5.0	. 63662
5.1	3.7401	2.5192	6.2599	4.9	. 63431
5.2	3.7187	2.5573	6.2813	4.8	. 62742
5.3	3.6798	2.6220	6.3202	4.7	. 61609
5.4	3.6203	2.7154	6.3797	4.6	. 60052
5.5	3.5360	2.8404	6.4640	4.5	. 58099
5.6	3.4220	3.0010	6.5780	4.4	. 55788
5.7	3.2724	3.2025	6.7276	4.3	. 53159
5.8	3.0794	3.4519	6.9206	4.2	. 50260
5.9	2.8335	3.7582	7.1665	4.1	. 47144
6.0	2.5229	4.1327	7.4771	4.0	. 43863
6.1	2.1325	4.5903	7.8675	3.9	. 40474
6.2	1.6429	5.1497	8.3571	3.8	. 37031
6.3	1.0295	5.8354	8.9705	3.7	. 33589
6.4	0.2606	6.6788	9.7394	3.6	. 30199
6.5	-0.7051	7.7210	10.7051	3.5	. 26907

## Table A-21

Critical values of Van der Waerden's X test
(from Van der Waerden, 1971, with kind permission of Springer Verlag, Berlin)

$\alpha=.025$				$\alpha=.01$				$\alpha=.005$			
$n$	$\left\|n_{1}-n_{2}\right\|=$			$n$	$\left\|n_{1}-n_{2}\right\|=$			$n$	$\left\|n_{1}-n_{2}\right\|=$		
	0,1	2,3	4,5		0,1	2,3	4,5		0,1	2,3	4,5
6	$\infty$	$\infty$	$\infty$	6	$\infty$	$\infty$	$\infty$	6	$\infty$	$\infty$	$\infty$
7	$\infty$	$\infty$	$\infty$	7	$\infty$	$\infty$	$\infty$	7	$\infty$	$\infty$	$\infty$
8	2.40	2.30	$\infty$	8	$\infty$	$\infty$	$\infty$	8	$\infty$	$\infty$	$\infty$
9	2.38	2.20	$\infty$	9	2.80	$\infty$	$\infty$	9	$\infty$	$\infty$	$\infty$
10	2.60	2.49	2.30	10	3.00	2.90	2.80	10	3.20	3.10	$\infty$
11	2.72	2.58	2.40	11	3.20	3.00	2.90	11	2.40	3.40	$\infty$
12	2.86	2.79	2.68	12	3.29	3.30	3.20	12	3.60	3.58	3.40
13	2.96	2.91	2.78	13	3.50	3.36	3.18	13	3.71	3.68	3.50
14	3.11	3.06	3.00	14	3.62	3.55	3.46	14	3.94	3.88	3.76
15	3.24	3.19	3.06	15	3.74	3.68	3.57	15	4.07	4.05	3.88
16	3.39	3.36	3.28	16	3.92	3.90	3.80	16	4.26	4.25	4.12
17	3.49	3.44	3.36	17	4.06	4.01	3.90	17	4.44	4.37	4.23
18	3.63	3:60	3.53	18	4.23	4.21	4.14	18	4.60	4.58	4.50
19	3.73	3.69	3.61	19	4.37	4.32	4.23	19	4.77	4.71	4.62
20	3.86	3.84	3.78	20	4.52	4.50	4.44	20	4.94	4.92	4.85
21	3.96	3.92	3.85	21	4.66	4.62	4.53	21	5.10	5.05	4.96
22	4.08	4.06	4.01	22	4.80	4.78	4.72	22	5.26	5.24	5.17
23	4.18	4.15	4.08	23	4.92	4.89	4.81	23	5.40	5.36	5.27
24	4.29	4.27	4.23	24	5.06	5.04	4.99	24	5.55	5.53	5.48
25	4.39	4.36	4.30	25	5.18	5.14	5.08	25	5.68	5.65	5.58
26	4.50	4.48	4.44	26	5.30	5.29	5.24	26	5.83	5.81	5.76
27	4.59	4.56	4.51	27	5.42	5.39	5.33	27	5.95	5.92	5.85
28	4.69	4.68	4.64	28	5.54	5.52	5.48	28	6.09	6.07	6.03
29	4.78	4.76	4.72	29	5.65	5.62	5.57	29	6.22	6.19	6.13
30	4.88	4.87	4.84	30	5.77	5.75	5.72	30	6.35	6.34	6.30
31	4.97	4.95	4.91	31	5.87	5.85	5.80	31	6.47	6.44	6.39
32	5.07	5.06	5.03	32	5.99	5.97	5.94	32	6.60	6.58	6.55
33	5.15	5.13	5.10	33	6.09	6.07	6.02	33	6.71	6.69	6.64
34	5.25	5.24	5.21	34	6.20	6.19	6.16	34	6.84	6.82	6.79
35	5.33	5.31	5.28	35	6.30	6.28	6.24	35	6.95	6.92	6.88
36	5.42	5.41	5.38	36	6.40	6.39	6.37	36	7.06	7.05	7.02
37	5.50	5.48	5.45	37	6.50	6.48	6.45	37	7.17	7.15	7.11
38	5.59	5.58	5.55	38	6.60	6.59	6.57	38	7.28	7.27	7.25
39	5.67	5.65	5.62	39	6.70	6.68	6.65	39	7.39	7.37	7.33
40	5.75	5.74	5.72	40	6.80	6.79	6.77	40	7.50	7.49	7.47
41	5.83	5.81	5.79	41	6.89	6.88	6.85	41	7.62	7.60	7.56
42	5.91	5.90	5.88	42	6.99	6.98	6.96	42	7.72	7.71	7.69
43	5.99	5.97	5.95	43	7.08	7.07	7.04	43	7.82	7.81	7.77
44	6.06	6.06	6.04	44	7.17	7.17	7.14	44	7.93	7.92	7.90
45	6.14	6.12	6.10	45	7.26	7.25	7.22	45	8.02	8.01	7.98
46	6.21	6.21	6.19	46	7.35	7.35	7.32	46	8.13	8.12	8.10
47	6.29	6.27	6.25	47	7.44	7.43	7.40	47	8.22	8.21	8.18
48	6.36	6.35	6.34	48	7.53	7.52	7.50	48	8.32	8.31	8.29
49	6.43	6.42	6.39	49	7.61	7.60	7.57	49	8.41	8.40	8.37
50	6.50	6.50	6.48	50	7.70	7.69	7.68	50	8.51	8.50	8.48

Table A-22

Critical lower values $L_{(\alpha)}$ of the binomial distribution
(from Diem, 1962, with kind permission of J.R. Geigy, Basel)

$n$	L (.01)	$L(.05)$	$n!$	$L_{(.01)}$	$L_{(.05)}$
6	-	0	41.	11	13
7	-	0	42	12	14
8	0	0	43	12	14
9	0	1	44	13	15
10	0	1	45	13	15
11	0	1	46	13	15
12	1	2	47	- 14	16
13	1	2	48	14	16
14	1	2	49	15	17
15	2	3	50	15	17
16	2	3	51	15	18
17	2	4	52	16	18
18	3	4	53	16	18
19	3	4	54	17	19
20	3	5	55	17	19
21	4	5	56	17	20
22	4	5	57	18	20
23	4	6	58	18	21
24	5	6	59	19	21
25	5	7	60	19	21
26	6	7	61	20	22
27	6	7	62	20	22
28	6	8	63	20	23
29	7	8	64	21	23
30	7	9	65	21	24
31	7	9	66	22	24
32	8	9	67	22	25
33	8	10	68	22	25
34	9	10	69	23	25
35	9	11	70	23	26
36	9	11	80	28	30 35
37	10	12	90	32	35
38	10	12	100	36	39 85
39	11	12	200	81	85 227
40	11	13	500	220	227

Table A-23
Coefficients $a_{i}$ for the $w$ test for normality
(from Shapiro and Wilk, 1965, with kind permission of Biometrika Trustees, London)

$i{ }^{n}$		2	3	4	5	6	7	8	9	10
1		0.7071	0.7071	0.6872	0.6646	0.6431	0.6233	0.6052	0.5888	0.5739
2		-	. 0000	. 1677	. 2413	. 2806	. 3031	. 3164	. 3244	. 3291
3		-	-	-	. 0000	. 0875	. 1401	. 1743	. 1976	. 2141
4		-	-	-	-	-	. 0000	. 0561	. 0947	. 1224
5		-	-	-	-	-	-	-	. 0000	. 0399
$i i^{n}$	11	12	13	14	15	16	17	18	19	20
1	0.5601	0.5475	0.5359	0.5251	0.5150	0.5056	0.4968	0.4886	0.4808	0.4734
2	. 3315	. 3325	. 3325	. 3318	. 3306	. 3290	. 3273	. 3253	. 3232	. 3211
3	. 2260	. 2347	. 2412	. 2460	. 2495	. 2521	. 2540	. 2553	. 2561	. 2565
4	. 1429	. 1586	. 1707	. 1802	. 1878	. 1939	. 1988	. 2027	. 2059	. 2085
5	. 0695	. 0922	. 1099	. 1240	. 1353	. 1447	. 1524	. 1587	. 1641	. 1686
6	0.0000	0.0303	0.0539	0.0727	0.0880	0.1005	0.1109	0.1197	0.1271	0.1334
7	-	-	. 0000	. 0240	. 0433	. 0593	. 0752	. 0837	. 0932	. 1013
8	-	-	-	-	. 0000	. 0196	. 0359	. 0496	. 0612	. 0711
9	-	-	-	-	-	-	. 0000	. 0163	. 0303	. 0422
10	-	-	-	-	-	-	-	-	. 0000	. 0140
$i i^{n}$	21	22	23	24	25	26	27	28	29	30
1	0.4643	0.4590	0.4542	0.4493	0.4450	0.4407	0.4366	0.4328	0.4291	0.4254
2	. 3185	. 3156	. 3126	. 3098	. 3069	. 3043	. 3018	. 2992	. 2968	. 2944
3	. 2578	. 2571	. 2563	. 2554	. 2543	. 2533	. 2522	. 2510	. 2499	. 2487
4	. 2119	. 2131	. 2139	. 2145	. 2148	. 2151	. 2152	. 2151	. 2150	. 2148
5	. 1736	.1764	. 1787	. 1807	. 1822	. 1836	. 1848	. 1857	. 1864	. 1870
6	0.1399	0.1443	0.1480	0.1512	0.1539	0.1563	0.1584	0.1601	0.1616	0.1630
7	. 1092	. 1150	. 1201	. 1245	. 1283	. 1316	. 1346	. 1372	. 1395	. 1415
8	. 0804	. 0878	. 0941	. 0997	. 1046	. 1089	. 1128	. 1162	. 1192	. 1219
9	. 0530	. 0618	. 0696	. 0764	. 0823	. 0876	. 0923	. 0965	. 1002	. 1036
10	. 0263	. 0368	. 0459	. 0539	. 0610	. 0672	. 0728	. 0778	. 0822	. 0862
11	0.0000	0.0122	0.0228	0.0321	0.0403	0.0476	0.0540	0.0598	0.0650	0.0697
12	-	-	. 0000	. 0107	. 0200	. 0284	. 0358	. 0424	. 0483	. 0537
13	-	-	-	-	. 0000	. 0094	. 0178	. 0253	. 0320	. 0381
14	-	-	-	-	-	-	. 0000	. 0084	. 0159	. 0227
15	-	-	-	-	-	-	-	-	. 0000	. 0076

Table A-23 (continued)

$i{ }^{n}$	31	32	33	34	35	36	37	38	39	40
1	0.4220	0.4188	0.4156	0.4127	0.4096	0.4068	0.4040	0.4015	0.3989	0.3964
2	. 2921	. 2898	. 2876	. 2854	. 2834	. 2813	. 2794	. 2774	. 2755	. 2737
3	. 2475	. 2463	. 2451	. 2439	. 2427	. 2415	. 2403	. 2391	. 2380	. 2368
4	. 2145	. 2141	. 2137	. 2132	. 2127	. 2121	. 2116	. 2110	. 2104	. 2098
5	. 1874	. 1878	. 1880	. 1882	. 1883	. 1883	. 1883	. 1881	. 1880	. 1878
6	0.1641	0.1651	0.1660	0.1667	0.1673	0.1678	0.1683	0.1686	0.1689	0.1691
7	. 1433	. 1449	. 1463	. 1475	. 1487	. 1496	. 1505	. 1513	. 1520	. 1526
8	. 1243	. 1265	. 1284	. 1301	. 1317	. 1331	. 1344	. 1356	. 1366	. 1376
9	. 1066	. 1093	. 1118	. 1140	. 1160	. 1179	. 1196	. 1211	. 1225	. 1237
10	. 0899	. 0931	. 0961	. 0988	. 1013	. 1036	. 1056	. 1075	. 1092	. 1108
11	0.0739	0.0777	0.0812	0.0844	0.0873	0.0900	0.0924	0.0947	0.0967	0.0986
12	. 0585	. 0629	. 0669	. 0706	. 0739	. 0770	. 0798	. 0824	. 0848	. 0870
13	. 0435	. 0485	. 0530	. 0572	. 0610	. 0645	. 0677	. 0706	. 0733	. 0759
14	. 0289	. 0344	. 0395	. 0441	. 0484	. 0523	. 0559	. 0592	. 0622	. 0651
15	. 0144	. 0206	. 0262	. 0314	. 0361	. 0404	. 0444	. 0481	. 0515	. 0546
16	0.0000	0.0068	0.0131	0.0187	0.0239	0.0287	0.0331	0.0372	0.0409	0.0444
17	-	-	. 0000	. 0062	. 0119	. 0172	. 0220	. 0264	. 0305	. 0343
18	-	-	-	-	. 0000	. 0057	. 0110	. 0158	. 0203	. 0244
19	-	-	-	-	-	-	. 0000	. 0053	. 0101	. 0146
20	-	-	-	-	-	-	-	-	. 0000	. 0049
$i i^{n}$	41	42	43	44	45	46	47	48	49	50
1	0.3940	0.3917	0.3894	0.3872	0.3850	0.3830	0.3808	0.3789	0.3770	0.3751
2	. 2719	. 2701	. 2684	. 2667	. 2651	. 2635	. 2620	. 2604	. 2589	. 2574
3	. 2357	. 2345	. 2334	. 2323	. 2313	. 2302	. 2291	. 2281	. 2271	. 2260
4	. 2091	. 2085	. 2078	. 2072	. 2065	. 2058	. 2052	. 2045	. 2038	. 2032
5	. 1876	. 1874	. 1871	. 1868	. 1865	. 1862	. 1859	. 1855	. 1851	. 1847
6	0.1693	0.1694	0.1695	0.1695	0.1695	0.1695	0.1695	0.1693	0.1692	0.1691
7	. 1531	. 1535	. 1539	. 1542	. 1545	. 1548	. 1550	. 1551	. 1553	. 1554
8	. 1384	. 1392	. 1398	. 1405	. 1410	. 1415	. 1420	. 1423	. 1427	. 1430
9	. 1349	. 1259	. 1269	. 1278	. 1286	. 1293	. 1300	. 1306	. 1312	. 1317
10	. 1123	. 1136	. 1149	. 1160	. 1170	. 1180	. 1189	. 1197	. 1205	. 1212
11	0.1004	0.1020	0.1035	0.1049	0.1062	0.1073	0.1085	0.1095	0.1105	0.1113
12	. 0891	. 0909	. 0927	. 0943	. 0959	. 0972	. 0986	. 0998	. 1010	. 1020
13	. 0782	. 0804	. 0824	. 0842	. 0860	. 0876	. 0892	. 0906	. 0919	. 0932
14	. 0677	. 0701	. 0724	. 0745	. 0765	. 0783	. 0801	. 0817	. 0832	. 0846
15	. 0575	. 0602	. 0628	. 0651	. 0673	. 0694	. 0713	. 0731	. 0748	. 0764
16	0.0476	0.0506	0.0534	0.0560	0.0584	0.0607	0.0628	0.0648	0.0667	0.0685
17	. 0379	. 0411	. 0442	. 0471	. 0497	. 0522	. 0546	. 0568	. 0588	. 0608
18	. 0283	. 0318	. 0352	. 0383	. 0412	. 0439	. 0465	. 0489	. 0511	. 0532
19	. 0188	. 0227	. 0263	. 0296	. 0328	. 0357	. 0385	. 0411	. 0436	. 0459
20	. 0094	. 0136	. 0175	. 0211	. 0245	. 0277	. 0307	. 0335	. 0361	. 0386
21	0.0000	0.0045	0.0087	0.0126	0.0163	0.0197	0.0229	0.0259	0.0288	0.0314
22	-	-	. 0000	. 0042	. 0081	. 0118	. 0153	. 0185	. 0215	. 0244
23	-	-	-	-	. 0000	. 0039	. 0076	. 0111	. 0143	. 0174
24	-	-	-	-	-	-	. 0000	. 0037	. 0071	. 0104
25	-	-	-	-	-	-	-	-	. 0000	. 0035

Critical values of the $W$ test for normality
(from Shapiro and Wilk, 1965, with kind permission of Biometrika Trustees, London)


Critical values of the normal probability plot correlation coefficient $r_{n}$ (from Filliben, 1975, with kind permission of American Statistical Association, Washington, D.C.)

$n$	$\alpha$					
	. 000	. 005	. 01	. 025	. 05	. 10
3 4 5	.866 .784 .726	.867 .813 .803	.869 .822 .822	.872 .845 .855	.879 .868 .879	.891 .894 .902
6	. 683	. 818	. 835	. 868	. 890	. 911
7	. 684	. 828	. 847	. 876	. 899	. 916
8	. 619	. 841	. 859	. 886	. 905	. 924
9	. 595	. 851	. 868	. 893	. 912	. 929
10	. 574	. 860	. 876	. 900	. 917	. 934
11	. 556	. 868	. 883	. 906	. 922	. 938
12	. 539	. 875	. 889	. 912	. 926	. 941
13	. 525	. 882	. 895	. 917	. 931	. 944
14	. 512	. 888	. 901	. 921	. 934	. 947
15	. 500	. 894	. 907	. 925	. 937	. 950
16	. 489	. 899	. 912	. 928	. 940	. 952
17	. 478	. 903	. 916	. 931	. 942	. 954
18	. 469	. 907	. 919	. 934	. 945	. 956
19	. 460	. 909	. 923	. 937	. 947	. 958
20	. 452	. 912	. 925	. 939	. 950	. 960
21	. 445	. 914	. 928	. 942	. 952	. 961
22	. 437	. 918	. 930	. 944	. 954	. 962
23	. 431	. 922	. 933	. 947	. 955	. 964
24	. 424	. 926	. 936	. 949	. 957	. 965
25	. 418	. 928	. 937	. 950	. 958	. 966
26	. 412	. 930	. 939	. 952	. 959	. 967
27	. 407	. 932	. 941	. 953	. 960	. 968
28	. 402	. 934	. 943	. 955	. 962	. 969
29	. 397	. 937	. 945	. 956	. 962	. 969
30	. 392	. 938	. 947	. 957	. 964	. 970
31	. 388	. 939	. 948	. 958	. 965	. 971
32	. 383	. 939	. 949	. 959	. 966	. 972
33	. 379	. 940	. 950	. 960	. 967	. 973
34	. 375	. 941	. 951	. 960	. 967	. 973
35	. 371	. 943	. 952	. 961	. 968	. 974
	. 367					
37	. 364	. 947	. 955	. 962	. 969	. 975
38	. 360	. 948	. 956	. 964	. 970	. 975
39	. 357	. 949	. 957	. 965	. 971	. 976
40	. 354	. 949	. 958	. 966	. 972	. 977
41	. 351	. 950	. 958	. 967	. 972	. 977
42	. 348	. 951	. 959	. 967	. 973	. 978
43	. 345	. 953	. 959	. 967	. 973	. 978
44	. 342	. 954	. 960	. 968	. 973	. 978
45	. 339	. 955	. 961	. 969	. 974	. 978
46	. 336	. 956	. 962	. 969	. 974	. 979
47	. 334	. 956	. 963	. 970	. 974	. 979
48	. 331	. 957	. 963	. 970	. 975	. 980
49	. 329	. 957	. 964	. 971	. 975	. 980
50	. 326	. 959	. 965	. 972	. 977	. 981
55	. 315	. 962	. 967	. 974	. 978	. 982
60	. 305	. 965	. 970	. 976	. 980	. 983
65	. 296	. 967	. 972	. 977	. 981	. 984
70	. 288	. 969	. 974	. 978	. 982	. 985
75	. 281	. 971	. 975	. 979	. 983	. 986
80	. 274	. 973	. 976	. 980	. 984	. 987
85	. 268	. 974	. 977	. 981	. 985	. 987
90	. 263	. 976	. 978	. 982	. 985	. 988
95	. 257	. 977	. 979	. 983	. 986	. 989
100	. 252	. 979	. 981	. 984	. 987	. 989

## INTERPOLATION

Tables generally furnish the value of a function $z$ which depends on 1 , sometimes 2, argumental ( $\equiv$ independent), variables $x, y$. Not always all values of the argumental variable (= arguments) are recorded so that the correspondent functional values can only be guessed by interpolation.

## Linear Interpolation

The argument $x$ for which the function $z$ is searched, is comprised between $x_{1}$ and $x_{2}$. From the table we obtain $z_{1}$ and $z_{2}$ in correspondence to $x_{1}$ and $x_{2}$, then the interpolated value $z$ corresponding to $x$, is obtained by

$$
\begin{equation*}
z=z_{1}+\frac{x-x_{1}}{x_{2}-x_{1}}\left(z_{2}-z_{1}\right) \tag{シ}
\end{equation*}
$$

Example i. We want the critical value of $t_{33}$ and $\alpha=.01$. We get from Table A-4

$$
\begin{array}{rlrl}
x_{1} & =30 & x=33 & x_{2}=40 \\
t_{30} & =z_{1}=2.457 & t_{33} \approx z=? & t_{40}=z_{2}=2.423
\end{array}
$$

On using (*) we get

$$
z=2.457+\frac{3}{10} .034=2.4468
$$

Example ii. Having obtained from an experiment $t_{25}=1.935$ we would like to know the value of $\alpha$. From Table A-4 we have now

$$
\left.\begin{array}{rlrl}
t_{25(.95)} & =x=1.708 & t_{25(1-\alpha)} & =x
\end{array}\right)=1.935 \quad t_{25(.975)}=x_{2}=2.060
$$

Hence

$$
z=.05+\frac{.227}{.325}(-.025)=.0339
$$

## Harmonic Interpolation

In some tables the last arguments are very high or even infinite. In these cases a harmonic interpolation is indicated. This is achieved by choosing the last finite argument and dividing it by the other arguments, e.g. as in Table A-6.1. The last finite argument is 120 and so we transform the last arguments to

$$
\frac{120}{\infty}=0, \quad \frac{120}{120}=1, \quad \frac{120}{60}=2, \quad \frac{120}{40}=3, \quad \frac{120}{30}=4, \quad \text { etc. }
$$

Since these values are linear, we can apply to them (\%).
Example iii. In Table A-6.1 we look for the value of $F_{2,150^{\circ}}$. We put

$$
\begin{array}{lll}
x_{1}=\frac{120}{\infty}=0 & x=\frac{120}{150}=.8 & x_{2}=\frac{120}{120}=1 \\
z_{1}=3.00 & F_{2,150} \approx z=? & z_{2}=3.07
\end{array}
$$

$$
\begin{aligned}
& \text { Applying (\%) we obtain } \\
& \qquad z=3.00+\frac{.8}{1} \quad .07=3.056
\end{aligned}
$$

## Areal Interpolation

If the function $z$ depends on 2 variables $x$ and $y$ it may be interesting to guess the function of 2 values which are not reported in the table. If we indicate by $x_{1}, x_{2}$, and $y_{1}, y_{2}$ the couples of argumental values which comprise $x$ and $y$, then we get from the table four values of the function $z$, for which we evaluate the means for each row and column, thus obtaining


Formula (\%) becomes now
(*:) $\quad z=z_{11}+\frac{x-x_{1}}{x_{2}-x_{1}}\left(\bar{z}_{2 \cdot}-\bar{z}_{10}\right)+\frac{y-y_{1}}{y_{2}-y_{1}}\left(\bar{z}_{\cdot 2}-\bar{z}_{\cdot 1}\right)$
This is equivalent to (*) first applied to $x$ and then to $y$ or vice versa, but only if neither $x$ nor $y$ have been transformed for harmonic interpolation.

Example iv. We look for $F_{17,33}$ in Table A-6.3. 17 is comprised between 12 and 24, 33 between 30 and 40 . Henice ${ }^{3}$,


By ( $\times$ ) we obtain

$$
z=2.84+\frac{3}{10}(-.18)+\frac{5}{12}(-.37)=2.63 \approx F_{17.33}
$$

If we transform $x$ and $y$ harmonically, we get

$$
\begin{array}{lll}
x_{1}=\frac{40}{30}=1 . \overline{3} \quad ; & x_{2}=\frac{40}{40}=1 \quad ; & x=\frac{40}{33}=1 . \overline{21} \\
y_{1}=\frac{24}{12}=2 & ; & y_{2}=\frac{24}{24}=1 \quad ;
\end{array}
$$

Hence, applying ( $\%$ )

$$
z=2.557 \approx F_{17,33}
$$

The true value $F_{17,33(.99)}$ lies between 2.557 and 2.63 .
R


[^0]:    * See page 57

[^1]:    * Tables $A-1$ to $A-25$ are placed in a special table annex at the end of the paper

[^2]:    *Approximation of the binomial test

[^3]:    *A distribution function $^{\text {A }}$ defined by the cumulated frequencies of a frequency distribution

