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CHILDHOOD EXPOSURE TO ENVIRONMENTAL LEAD 

I. Introduction 

1.1. Aim of this report 

Considerable attention has been given to evaluating the significance 
of environmental pollution by lead. It has long been known that lead 
in sufficient quantities is a neurotoxin, but whether general 
environmental sources can result in the build-up and transfer of lead 
to an extent which might cause serious damage to human health is a 
question yet to be answered. Recent studies suggest that adverse 
health effects can occur at blood lead levels which are lower than the 
levels previously considered safe. Other studies emphasize the 
importance of the ingestion of soil and dust particles in contributing 
to the lead intake by young children, who are most at risk from 
exposure to lead. 

For these reasons, re-evaluations of environmental quality 
standards for lead are called for. The key elements of such standards 
are the blood lead threshold and the impact of environmental lead 
exposure on blood lead concentrations in children. It may be 
necessary to adopt a lower blood lead threshold, whereas at the same 
time, the impact of environmental lead exposure on children's blood 
lead is probably greater than was previously assumed. 

In this report, the exposure of children to environmental lead is 
discussed, along with the impact of environmental lead exposure on 
the concentration of lead in children's blood. The environmental 
pathways of lead to children are discussed in Chapter 2, the 
relationship between environmental exposure and actual lead intake 
in Chapter 3 and the concentration of lead in blood as a measure of 
internal exposure in Chapter 4. Factors other than lead intake which 
affect the concentration of lead in blood are considered in Chapter ) 
and the action of confounding factors which may distort the 
relationship between environmental lead and blood lead in Chapter 6. 



Epidemiological studies of environmental lead in relation to children 
are reviewed in Chapter 7 and a summary is given of quantitative 
estimates of the impact of environmental lead exposure on blood lead 
levels of children. A set of tentative conclusions concerning the 
scientific basis of standards for environmental lead is given in 
Chapter 8 and the usefulness of environmental and biological 
monitoring of lead is discussed in Chapter 9. 

1.2. Children as a population at risk 

There is general agreement that, within the non-occupationally 
exposed population, the foetus and children up to about six years of 
age constitute the population most at risk from lead exposure (WHO 
1977a; EPA 1978; National Research Council 1980; Rostron 1982a, 
1982b.) 

The main reasons for this are that in comparison with adults (I) 
children are more susceptible to lead (2) they take in more lead with 
food per kg body weight (3) they exhibit mouthing which exposes 
them to lead in dust and dirt and (4) they absorb more lead from the 
gut. 

(1) Susceptibility 
It is well established that at a given level of lead in the blood (PbB), 
children suffer more severely from ill effects than do adults. The 
level of free erythrocyte protoporphyrin in blood begins to rise at 
lower PbB levels in children than in adults (Roels et al. 1976, 1978b; 
Cavalleri, Baruffini, Minoia and Bianco 1981; Piomelli et al, 1982). 
Adverse effects on the central nervous system (CNS), as measured by 
various tests of mental ability, have been suggested as occurring at 
PbB levels well below those at which CNS-effects in adults can be 
detected (Needlemari et al. 1979; Yule, Landsdown, Millar and 
Urbanowicz 1981; Winneke, Hrdina and Brockhaus 1982; Needleman 
1983; Winneke et al. 1983; for reviews cf. Rutter 1980; Bornschein, 
Pearson and Reiter 1980a, 1980b; Rostron 1982a, 1982b), although it 
is still a hotly debated issue at what level of blood lead 
concentrations these effects start to manifest themselves 
(Anonymous 1982a, 1982b, 1982c; 3ones et al. 1983). Previously, it 
was thought that adverse CNS-effects did not occur in children who 
had PbB levels below 30 ug 100 m9,' , but now some authors have 
begun to doubt the existence of a threshold below which adverse 
effects do not occur. 

It has been suggested that acceptable levels of lead in blood 
should be lower for children than for adults (Roels et al. 1978b; 
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Grandjean 1981; Zielhuis 1981; Piomelli et al. 1982). 

Intake by food 
Children take in more lead per kg body weight with their food than do 
adults, for the simple reason that they consume more food per kg of 
body weight. The difference may well be two- to threefold (Barltrop 
1972; ICRP 1975) depending on the age of the child. Expressed per 
unit volume of blood, the intake in children has been asserted to e 
1.5 times greater than in adult women (Duggan 1983a). The 
inhalation rate per kg of body weight is also greater (IKnelson 1974) 
due to the higher metabolism in children. 

Mouthing behaviour 
During some period in early life, the normal child will investigate its 
surroundings by hands and mouth (Lepow et al. 1974; Sayre, Charney, 
Nostal and Pless 1974; Charney, Sayre and Coulter 1980). The 
amount of dust and dirt ingested as a consequence of mouthing has 
never been directly measured. It has been suggested that the amount 
of ingested dust could be in the order of about 20-50 mg d' (Uuggan 
and Williams 1977) but this figure should not be taken as more than 
an 'educated guess'. Regardless of how large the ingested quantity 
actually is, it will be larger than the relative amounts of dust and dirt 
ingested by adults, although one recent study has suggested that lead 
in dust and dirt represents a pathway of lead intake for adults also 
(Gallacher et al. 1984b, 1984c). 

Absorption 
Limited evidence suggests that the absorption of lead from the gut is 
more efficient in children than in adults (Alexander, Delves and 
Clayton 1972; Alexander, Clayton and Delves 1974; Ziegler et al. 
1978). In animal studies, it has been clearly documented that very 
young animals absorb more lead from the gut than do adult animals 
(Jugo 1977; Quarterman and Morrison 1978; Mahaffey 1983). 

1-lowever, a higher absorption rate does not necessarily mean 
that more lead is being retained as well; a number of children in the 
study by Ziegler et al. (1978) actually excreted more lead than they 
absorbed, indicating that lead excretion may also be higher in 
children than in adults. It has been pointed out, however, that this 
may be so only at low levels of exposure, and that at somewhat 
higher levels, more lead is actually being retained by children than by 
adults (Ryu, Ziegler, Nelson and Fomon 1983). 

Points 2-4 would lead one to expect that, in general, children 



should have higher blood lead levels than adults. But this is not the 
case (Chamberlain 1983a; Duggan 1983b, 1983c). Children living in 
environments not heavily polluted have repeatedly been shown to 
have blood lead levels only slightly higher than those of their 
mothers, and more or less equal to those of their fathers (Billick, 
Curran and Shier 1979; Mahaf fey, Annest, Barbano and Murphy 1979). 

Various explanations can be proposed for this phenomenon. The 
additional intake through mouthing activity could be negligible 
compared with lead intake via food (Chamberlain 1981); however, the 
intake of lead from food alone is already so much larger in children 
than in adults, on a per kg body weight basis, that a difference in the 
metabolism of children and adults has in any case to be assumed; and 
in the absence of precise knowledge of the size of the difference, it 
does not seem possible to draw any conclusion on the amount of lead 
ingested through mouthing from the absence of considerable 
differences between blood levels in children and adults in 
non-polluted areas alone. 

Another explanation would be that the distribution of lead in the 
various body tissues is different in children and in adults (Ouggan 
1983a). It is true that in children relatively more lead is to be found 
in the soft tissues compared with adults, where 90-95 per Cent of the 
total body burden of lead is in the skeleton (Schroeder and Tiptori 
1968; WHO 1977a). This probably reflects mainly the fact that the 
lead concentration in children's bones is much lower than in adult 
bones; limited evidence from a study by Barry (1981) does not support 
the hypothesis that the lead concentration in soft tissues in children - 
including the brain - is higher than it is in adult soft tissues. 

A more likely explanation would be that although uptake from 
the gut is higher in children than in adults, both through higher food 
intake and greater absorption efficiency, retention is not necessarily 
higher because the uptake may be offset, to a certain extent, by a 
higher excretion rate (Duggan 1983a). As mentioned, the Ziegler et 
al. (1978) study supports this; a recent study by Ryu et al. (1983) in 
addition has demonstrated that at levels of lead intake which are low 
- but still higher than in adults on a per kg body weight basis - 
children's blood lead levels in the first half year after birth remained 
below those of their mothers, and even decreased somewhat during 
the first months of life. A subsequent higher intake in some of the 
children resulted in a doubling of the children's blood lead levels 
within a few months, suggesting that only at low levels of intake is 
excretion able to balance uptake. The Ryu et al. (1983) study shows a 
similarity with a study from the Federal Republic of Germany (Haas 
et al. 1972) in which it was shown that blood lead levels in 



hospitalized children aged 0-6 years were lower than at birth. For 
other examples cf. Duggan (1983b, 1983c). 

It is well established that a child is born with a blood lead level 
which is somewhat lower (10-20 per cent) than that of its mother 

A 	(E-laas et al. 1972; Schalier et al. 1976; Kuhnert, Erhard and Kuhriert 
* 	1977; Buchet, Roels, Huberrnorit and Lauwerys 1978; Roels, 

1-lubermont, Buchet and Lauwerys 1978a; Alexander and Delves 1981; 
Kaul, Davidow, Eng and Gerwirtz 1983; Zarembski, Griffiths, Walker 
and Goodall 1983; Tsuchiya, Mitani, Kodama and Nakata 1984). Over 
90 per cent of the lead in blood is in the erythrocytes (Zielhuis 
1974). At birth, children have a haematocrit value which is about 
twice that of their mothers (Ziethuis 1974; ICRP 1975) and it has 
been argued that this protects new-born children from the adverse 
effects of lead, as at a certain blood lead level, the concentration in 
the erythrocytes as well as in the plasma is lower in new-born 
children than in their mothers. It has to be pointed out, however, 
that the haematocrit decreases rapidly after birth and that between 
0.5 to 2 years it is actually lower in children than in their mothers 
(ICRP 1975). Up to a certain level of exposure, the blood lead level 
in children apparently does not rise above its initial level. Still, this 
does not necessarily mean that the child excretes as much lead as it 
absorbs. A child grows and builds up a body burden of lead which may 
very well be about 50 rng when the child has reached adulthood 
(Schroeder and Tiptori 1968; Barry 1978). If in the course of 20 years 
35 mg of lead have been added to the body burden, this constitutes an 
average retention of 35 mg/(20 x 365) = 5 ig d' (approximately). 
In recent years, it has become clear that lead intake via food by 
young children in many countries is probably only about 10-30 
micrograms per day of which 50 per cent at most is being absorbed 
from the gut (cf. Section 2.7 for further details). 

It could be argued that quite a large part of the absorbed lead 
simply goes into the formation of the total body burden over the 
years. The body burden figures used to arrive at this tentative 
conclusion may be too high for present-day Situations, as levels of 
lead in blood and in food seem to have been declining (cf. Diehl 1982; 
Oxley 1982; Annest et al. 1983; Brunekreef, Noij, I3iersteker and 
Boleij 1983; Elwood 1983a; Sherlock 1983). At least part of the 
reduction of lead in food has been ascribed to analytical artefacts 
(Sherlock 1983; Bloom and Smythe 1984); as the body burden of lead 
is mainly determined by the lead content of bones which is relatively 
high and therefore somewhat easier to measure without bias, it is 
possible that total body burden data as measured 10-20 years ago still 
have relevance for present-day situations. 



Lack of specific data makes it difficult to arrive at reliable 
estimates of how much of the absorbed lead actually goes into the 
formation of the body burden; it is certainly not a negligible part. It 
is clearly a point that deserves additional attention. 

2. Environmental pathways of lead 

2.1. The exposure system 

Once released into the environment, lead can reach children through 
a number at different pathways. The major sources and pathways are 
shown in Figure 1.1. 

environmental 
sources 

outdoor 
path ways 

indoor 
pathways 

modes of 
intake 

response 
variable 

d ieta ry  
pathways 

non-environmental 
sources; 
direct sources to 
food and water 

traffic 	industry 	mining 	paint 

1 ./_\./ ambient air 	soil 	street dust 

indoi  

b!ood leaf/ \ 

food 	water 

	

industrial operations 	supply pipes 

Figure 1.1 Sources of environmental lead and pathways to children 

Although the figure looks complex it is, in fact, a simplification. 
A comparable flow chart in the NAS report (National Research 
Council 1980) 'Lead in the human environment' has over a hundred 
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arrows and interactions; I3illick (1983) has aptly remarked that that 
flow chart certainly illustrates the complexity of the system, 'but 
whether it clarifies or confuses the understanding of what is 
happening is questionable.' It is hoped that Figure LI will clarify 
rather than confuse; it mostly contains variables which can 
conceivably be measured in a single study. Four main categories of 
environmental sources have been discerned. Of these, vehicular 
traffic is the single largest source of environmental lead pollution in 
the industrialized nations, which accounts for over 90 per cent of all 
emissions into the atmosphere (WHO 1977a; National Research 
Council 1983; Harrison and Laxen 1984). 

The organolead compounds tetra-ethyllead and tetra-methyllead 
have been added to petrol as an anti-knock agent in concentrations up 
to I g -' in the past. At present, the maxiumum concentration is 
limited to 0.15 to 0.40 g i' in many countries, and lead-free petrol 
is used in Japan and is increasing its market share in the U.S.A. In 
the future, lead will probably be removed from petrol in the countries 
of the European Communities as well (Anonymous 984). In The 
Netherlands, the lead content of petrol will be reduced to a maximum 
of 0.15 g 1Y' in 1986 (Zielbuis 1984), and by the end of 1984 one 
manufacturer had actually started to offer lead-free petrol for sale. 

It is estimated that some 75 per cent of lead in petrol is released 
into the atmosphere, mostly in the form of inorganic lead compounds 
(Habibi 1970; Chamberlain et al. 1978). 

Industrial lead emissions are quantitatively less important, but 
they have led none the less to very high pollution levels near 
industrial sources in a number of countries (Roberts, Gizyn and 
Hutchinson 1974a; Roberts et al. 1974b; Einbrodt, Rosmanith, 
Dreyhaupt and Schriider 1975; Landrigan et al. 1975; Rosmanith, 
Einbrodt and Gordon 1975a; Rosmanith, Schriider, Einbrodt and Ehm 
1975b; Rosmanith, Einbrodt and Ehm 1976; Roels et al. 1976, 19781), 
1980; Yankel, Lindern and Walter 1977; Schmitt et al. 1979; Zielhuis 
et al. 1979; Walter, Yankel and Lindern 1980; Cavalleri et al. 1981; 
Popovac et al. 1982; Prpic-Majic, Meczner, Telisman and Kensanc 
1983). In mining districts, large quantities of lead can be found in the 
soil (l3arltrop, Strehiow, Thornton and Webb 1974; Davies and Roberts 
1978; Davies and White 1981a,b; Davies, Ginnever and Lear 1981c; 
Davies 1983; Culbard et al. 1983a, 1983b). 

In the past, lead was a major constituent of paint in many 
countries (Chisholm 1973). In the U.S.A. especially, the combination 
of flaking high-lead paints and adverse social conditions in inner city 
areas has led to a large number of fatal poisonings among children 
(Ingalls, Tiboni and Werrin 1961; Anderson and Clark 1974; Chishol.n 



1982). Similar experiences have not been reported from other 
countries although this does not mean that crumbling paint locally 
does not contribute heavily to lead pollution of dust and dirt inside 
and outside dwellings (Millar and Cooney 1982; Reeves, Kjellström, 
Dallow and Mullins 1982). 

The three major outdoor pathways are air, soil and dust. When 
airborne lead is inhaled, the smaller particles (less than about 1-2 trm 
in diameter) penetrate deep into the lungs, and experiments with 
radioactive lead have shown that lead is quantitatively absorbed 
(Knelson et al. 1972; Chamberlain et al. 1975, 1978; Chamberlain 
1983a; Gross 1981). It has been argued that in these experiments 
more soluble forms of lead were used than are commonly encountered 
in the atmosphere (Lawther, Commins, Ellison and biles 1972). At 
autopsy, the lead concentration in the lungs of adults was, however, 
not found to be elevated (Barry 1978) which reinforces the conclusion 
that no retention of lead occurs in the lung. Larger particles are 
trapped in the upper region of the respiratory tract, whence they can 
be ingested, thereby contributing to total exposure through another 
mode of intake. Soil and street dust may contribute to total exposure 
mainly when lead-bearing particles are ingested by children. 

The main indoor pathways are indoor air and house dust; the 
respective modes of intake are the same as for the outdoor pathways, 
i.e. inhalation and ingestion. Food and drinking water constitute the 
main dietary pathways. Lead in drinking water mainly originates from 
lead dissolved in water supply systems, but in the case of food the 
picture is less clear (for further details cf. Chapter 6). 

- It must be stressed that it is generally not possible to derive 
fixed transfer coefficients indicating how large the transport of lead 
through some pathway is, irrespective of the situation which is being 
studied. Quite a number of 'transfer modifying variables' exist, and 
some knowledge of their value is necessary when studying lead intake 
from the environment by children in a specific environment. Some 
examples are the frequency of hand-to-mouth movements, which is 
an obvious determinant of the amount of dust which is being ingested; 
and a child's nutritional status which is a determinant of the blood 
lead concentration, given a certain intake of lead. 

2.2. Selected environmental pathways 

The main environmental pathways of lead to children are air and soil, 
dust, dirt and paint. 

2.2.1. Air lead. The main sources of lead in outdoor air are 



vehicular traffic and industrial emissions (WHO 1977a; National 
Research Council 1980; Chamberlain 1933a; Harrison and Laxen 
1984). Consequently the concentration of lead in air varies with 
distance from roads and industrial sources (Dames, Motto and Chilko 
1970; Little and Wiffen 1977). Near roads, a variation with elevation 
has also been reported, with higher levels at Street level than at 
rooftop level (Darrow and Schroeder 1974; Lioy, Mallon and Kneip 
1980). The traffic-generated lead aerosol is mostly in the submicron 
range (Chamberlain et al. 1978) so that upon inhalation it can 
penetrate deeply into the lung. Near industrial sources, more of the 
lead is in particles larger than 1 jim (Roberts et al. 1974a; Landrigan 
et al. 1975; Paciga, Roberts and Jervis 1975), and less of it will 
penetrate to the deeper regions of the lung. 

Lead in outdoor air is usually sampled with high volume 
samplers; these devices are known to sample particles up to about 
10 urn quite efficiently (Wedding, McFarland and Cermak 1977; van 
der Meulen, 1-lofschreuder, van de Vate and Oeseburg 1980. 
Consequently, the amount of lead which can actually reach the 
alveoli in the lung is being overestimated by high volume 
measurements, and the bias will most probably be larger near 
industrial lead sources than near roads. 

Other devices, sampling lower volumes of air, are sometimes 
used, and the resulting air lead concentrations are usually lower than 
those measured by high volume samplers at the same spot and time 
(Lieback and Ruden 1983). Indoors, the concentration of lead in air is 
typically lower than outdoors (Dames, Smith, Feliciano and Trout 
1972; Johnson et al. 1978; Alzona et al. 1979; Cohen and Cohen 
1980). It has been shown that large particles in outdoor air penetrate 
less well into buildings than do small particles (Cohen and Cohen 
1980). Presumably the indoor/outdoor ratio therefore differs in areas 
where air lead is predominantly of industrial origin from that in areas 
where vehicular traffic is the main source. 

Inside driven cars, the concentration of air lead has been shown 
to be equal to or lower than the concentration of outdoor air lead 
measured on the street where the car was being driven (Bevan, 
Colwill and Hogbin 1974; Chamberlain et al. 1978), but higher than 
the concentrations measured at nearby fixed monitoring sites 
(Rohbock 1981; Den Tonkelaar 1983). This is due to the rapid 
decrease of the lead concentration in the air next to the road. 

Due to the many sources of variability mentioned above, the 
concentration of lead in the air which is actually being inhaled cannot 
be well estimated from measurements at fixed sites in outdoor air; a 
correlation of only 0.20 (Spearman's rank correlation coefficient) has 



been reported between the concentration of lead in air as measured 
with personal samplers and the concentration of lead in air measured 
at fixed outdoor sites (Tosteson, Spengler and Weker 1982). The 
range of outdoor air lead concentration in this particular study was 
small, 0.1 to 0.5 jig m; when larger ranges of air lead are being 
studied, the correlation between the concentrations of lead in inhaled 
and outdoor air will be higher, especially when there are systematic, 
large differences in outdoor air lead between areas where people 
spend most of their time. 

2.2.2. Wet and dry deposition. From the air, lead is transferred to 
the earth's surface by dry and wet deposition (Galloway et al. 1982). 
The dry deposition flux is related to the concentration of lead in air; 
the relationship has been expressed in the following equation 

F = VgC 	 (Chamberlain et al. 1978) 

F 	= flux (mass per surface unit per time unit) 
Vg 	= deposition velocity (distance units per time unit) 
C 	= concentration of lead in air (mass per volume 

unit) 
The deposition velocity is a unit which depends on the structure of 
the surface to which deposition takes place; if the surface is rough, 
more mass is being transferred to it per surface unit from the air at a 
given air lead concentration than when the surface is smooth. For 
different types of grass fields, the deposition velocity was shown to 
range from 0.05 to 1 cm s' for example (Davidson, Miller and 
Pleskow 1982). As a result there may be large differences of dry 
deposition fluxes in areas with comparable outdoor air lead 
concentrations. 

Wet deposition of lead occurs when lead particles are trapped by 
rain and snow, and thereby transferred to the earth!s  surface. It 
depends on precipitation volume, intensity and duration (Lindberg 
1982). The ratio between wet and dry deposition is not fixed, but 
depends on climatic factors. For a deciduous forest in the eastern 
U.S.A. which has a yearly precipitation of 1,400 mm, it was shown 
that wet deposition accounted for 45 per cent of the total 
atmospheric deposition of lead (Lindberg and Harris 1981). For New 
York City, a value of 56 per cent has been reported (Nriagu 1978a). 
The input of lead from the air into other environmental pathways is 
thus not a fixed function of the air lead concentration. 

2.2.3. Lead in soil. The concentration of lead in soil has been shown 
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to be high in or near mining areas (Barltrop et aL 1974; Nriagu 1978b; 
Davies 1983; Culbard et al. 1983a), near industrial lead sources 
(Roberts et al. 1974a; Landrigan et al. 1975; Yankel et al. 1977), and 
near (mostly wooden) houses painted with high-lead paints (Ter Haar 
and Chadzynski 1979; Reeves et al. 1982). Vehicular traffic causes 
elevated lead concentrations in soil within about 100 rn of busy roads 
(Page and Ganje 1970; Page, Ganje and Joshi 1971; Fergusson, Hayes, 
Yong and Thiew 1980; Nealy and Aslarn 1980; Agrawal, Patel and 
Merh 1931; Garcia-Miragaya, Castro and Paolini 1981; Byrd, Gilmore 
and Lea 190 and adds only slightly to lead concentrations away 
from roads (>150 rn). 

In most soils, lead is highly immobile (Khan 1980; Scokart, Meeus 
Verdinne and de Borger 1983); as the pollutants are usually deposited 
on the top layer, the concentration of lead in soil in polluted areas 
may vary sharply with depth (Roberts et al. 1974a; Farmer and Lyon 
1977; Steinnes 1983). The amount of lead recovered from a soil 
sample varies with the extraction method used (Khan 1980; Köster 
and Merkel 1982). It is possible to recover virtually all lead from 
samples by using hot concentrated acids, but the use of less strong 
extractants enables different proportions of total lead to be 
recovered from different soil samples (iKister and Merkel 1982; 
Harrison and Laxen 1977). Consequently, extraction methods and 
sampling depths should be reported when studying soil lead 
concentrations. 

The accessibility of soils determines their potential as a pathway 
of lead to children; it is obvious that if soils are inaccessible because 
they have been paved, they cannot contribute much to exposure. In 
gardens and playgrounds, type and density of vegetation may 
influence the possibility of direct contact with the soil (Barltrop et 
al. 1974; Seifert, Drews and Aurand 1934). No attempt has yet been 
made to develop 'measures of accessibility'. 

2.2.4. Lead in Street dust. Lead concentration in street dust was 
shown to be elevated in inner city areas with high traffic densities 
(Cool, Marcoux, Paulin and Mehra 1980; Fergusson et al. 1980; 
Fergusson and Ryan 1984; Graf, Baars, Grote and Ubelmesser 1930; 
Anagnostopoulos 1983) and near industrial lead sources (Roberts et al. 
1974a; Yankel et al. 1977) as a consequence of wet and dry 
deposition. In addition, crumbling paint may contribute to lead in 
street dust (Ter Haar and Aronow 1974; Reeves et al. 1982). Paint on 
street curbs and bridges has also been implicated as a source of lead 
in street dust (Franz and 1-ladley 1981; Landrigan et al. 1982). As 
with lead in soil, the extraction method used to recover lead from 
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street dust determines which proportion of lead will actually be 
recovered (Day, Fergusson and Chee 1979; Ellis and Revitt 1982; 
Jones and McDonald 1983; Gibson and Farmer 1984) The variety of 
sampling methods used are great; they may include sweeping a 
certain area with brooms (Elwood et al. 1977; Harrison 1979) or using 
a specially designed vacuum cleaner (Brunekreef et al. 1983). The 
concentration of lead in the dust has been shown to depend on the 
particle size (Rameau 1972; Linton, Natusch, Solomon and Evans 
1980; Ellis and Revitt 1982). 

As a consequence, the results of measurements pertaining to 
different size fractions of the dust cannot be directly compared. The 
concentration of lead in the dust also depends on whether the samples 
were taken from the pavement, the gutter or from the road surface 
itself (Cool et al. 1980). The variability of dust lead concentrations 
in time and space has only been assessed on a limited basis (Duggan 
1984; Gallacher et al. 1984a; Hamilton, Revitt and Warren 1984); it is 
probably rather large, suggesting that collection of large area 
samples and some repetition of sampling are needed to reduce the 
variability in estimates of exposure to dust lead. Lead in street dust 
is usually expressed as weight ratio, mg kg - ' of dust; sometimes lead 
loadings are used (ig of lead per m 2  of pavement) which are thought 
to reflect the total available lead better than the lead concentration 
in the dust itself (brunekreef et al. 1983), but which are probably 
even more variable than the lead concentration in the dust (Hamilton 
et al. 1984). There is a definite need for standardization of street 
dust sampling procedures and methods; at present, the results of 
different studies can only be compared with care, and not without 
reference to the sampling methods and procedures. 

2.2.5. Lead in house dust. For lead in house dust, the same major 
sources have been identified as for lead in street dust. In addition it 
has been shown that the house dust in lead workers' homes may 
contain very high levels of lead (baker et al. 1977; Elwood et al. 
1977; Rice et al. 1978; Fergusson 1981; Kawai, Toriumi, Katagiri and 
Maruyama 1983). This was found in spite of changing their work 
clothes and showering by the lead workers in the factory (Rice et al. 
1978) and it has been suggested that lead is being transported home 
on shoes, socks, etc. (Elwood et al. 1977). 

The same problems in sampling and analysis exist as with street 
dust. Sometimes samples are taken from the house vacuum cleaner 
(Yankel et al. 1977; Culbard et al. 1983a, 1983b). As vacuum 
cleaners and vacuum cleaning practices vary across houses, the dust 
inside the cleaners is ill defined. 
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Specially designed vacuum cleaners have been used to 
standardize sampling across homes (Solomon and Hartford 1976; 
llrunekreef, Veenstra, Biersteker and J3oleij 1981; Brunekreef et al. 
1983). In house dust as well as street dust the lead concentration 
varies with particle size (Johnson, Fortmann and Thornton 1982) so 
sampling has sometimes been restricted to the smaller particles, as 
these tend to have the higher lead concentration and are presumed to 
stick to children's hands more readily than do large particles (Duggan 
and Williams 1977; 3runekreef et al. 1983). For house dust there is 
consequently the same need for standardization of sampling 
procedures and methods. One method which has been used to evade 
the variability associated with sampling floor dust is to measure lead 
deposition in homes (L3runekreef et al. 1981, 1983; Aurand, Drews and 
Seifert 1983; Seitert et al. 1984). Sampling periods of one week to a 
few months have been used when this method was applied, thereby 
giving a somewhat more integrated picture than is obtainable when 
spot samples of floor dust are taken. 

For soil and dusts in general, it has not been clearly established 
which are the most relevant characteristics which should be 
measured to estimate the exposure of children. All that can be said 
at present is that lead should be measured on surfaces which are 
accessible to children - but accessibility as such is not a clearly 
defined item either, as mentioned earlier. At best, the various 
measures of lead in soil and dust are crude approximations of actual 
lead intake, and this should be borne in mind when analysing the data 
from studies on the relationship between environmental lead and 
blood lead, as will be discussed further in Chapter 7, Section 4. 

The transfer of environmental lead into the food chain will be 
discussed in Chapter 6. 

An important aspect of studying environmental pathways for 
lead is the absence or presence of a steady state. The concentration 
of lead in air will quickly respond to changes of lead emissions into 
the air in the area under study, but this is not true for the 
concentration of lead in most other pathways. The concentration of 
lead in surface soil will slowly increase for years after emission has 
started - and may take years to decrease after emission has stopped, 
as lead is persistent in most soils. Street dust is subject to removal 
in periods of rainfall or street cleaning; house dust is moved by 
cleaning practices as well. Therefore, the concentration of lead in 
street and house dust probably responds more quickly to emission 
changes but, here again, time lags of uncertain lengths are likely. It 
is thus of importance to obtain historical information on emission 
changes when studying a particular environment. 
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3. Exposure/dose relationships 

The main modes of lead intake from the environment by children are 
inhalation and ingestion. 

Children inhale more air per kg body weight than do adults 
(Knelson 1974). For persons at rest, the difference is about twofold 
for very young children (< 3 years); when children grow older, the 
difference gradually decreases. There is not much difference 
between boys and girls until they have reached puberty. From about 
12-13 years of age, ventilation in boys is somewhat higher than in 
girls. 

In addition to the higher inhalation rate per kg bocy weight at 
rest, children tend to be more active than adults. To an unknown 
extent, the real volume of inhaled air per kg body weight will thus be 
higher again. If the same proportion of inhaled lead is deposited in 
the lungs, and if the same proportion of the deposited lead is 
absorbed from the lungs in children as in adults, the uptake from air 
in the first 3-5 years of life is probably larger by a factor of at least 
two. Depending on air lead concentrations, this may be important as 
part of total uptake. 

The ingestion of soil and dust by children is extrerie1y hard to 
quantify. It depends on the frequency with which hands and objects 
are mouthed, on the amount of dust removed from hands and objects 
by mouthing, and on the concentration of lead in the dust. 

Mouthing frequencies of children have been observed, and may 
range from 2.4 to 6.4 times per hour (Lepow et al. 1974; Brunekreef, 
Smit, Dieckrnan and F-leernskerk 1978). There are no observations of 
the amount of lead or dust on children's hands just before and after 
mouthing. Mouthing is considered to be an aspect of normal child 
development (Charney 1982) and it is reported to occur at least until 
children are 5 or 6 years of age (Barltrop 1966; Vostal, Taves, Sayre 
and Charney 1974; Charney 1982). 

Mouthing frequency appears to depend on a number of social 
factors like inadequate child care, quality of play environment, 
presence of siblings who 'teach' each other the habit, etc. (Green, 
Wise and Callenhach 1976; Stark, Meigs, Quah and De Louise 1978, 
1982a, 1982b; Madden, Russo and Cataldo 1980; Hunt, Hepner and 
Seaton 1982; O'Hara 1982). 

Pica, which is Latin for 'magpie', is the tendency actually to 
chew and eat non-food items on a regular basis, usually in excessive 
amounts, and is considered an abnormality (Barltrop 1966: Palmer and 
Ekvall 1978; Charney 1982). The etiology of pica is n3t well 
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understood; exaggerated mouthing behaviour, addiction, personality 
disturbances, emotional factors and nutritional status have all been 
mentioned as possible causes (Mooty, Ferrand and Harris 1975; 
Palmer and EkvalI 1978). Due to the fact that pica itself is 
inconsistently defined in the literature, it is also difficult to estimate 
its prevalence reliably. Barltrop (1966), for example, has estimated 
its prevalence as high as 48 per cent for one-year-old children living 
in Boston. This figure was based on the results of a questionnaire 
sent to parents of a random sample of all children living in E3ostor, 
and tpicat  was defined as placing non-food objects into the mouth 
rather than actually swallowing them, as the objects which were 
allegedly ingested included blankets, shoes and tooth brushes. It 
would seem that the prevalence of mouthing rather than pica has 
been estimated in this particular study. 

The amount of lead on children's hands has been measured by 
several investigators. In Table 3.1. the findings are listed and details 
about the circumstances of measurement are given. From the results 
it appears that in urban environments up to 20-30 .ig of lead can be 
found on a child's hand during normal play. '4ear industrial sources, 

Table 3.1. Lead on children's hands in a number of investigations 

Reference Lead on hands 
('ig per hand) 

Remarks 

Vostal 20 Median in urban children (2-6 
et al. 1974 years of age) 

S Median in suburban children 
(2-6 years of age) 

Rods 244-436 School-age children near smelter 
et al. 1980 (10-14 years of age) 

13-20 Urban children (10-14 years of age) 
Brunekreef 12 Inner city children (4-6 years of age) 
et al. 1983 5 Suburban children (4-6 years of age) 

Charmey 49 Children with PbB 40-70 ig 100 m9' 
et al. 1980 (1-6 years of age) 

21 Children with PbB <29 'g 100 rnt' 
(1-6 years of age) 
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or in homes where the lead content of dust is high through paint or 
other causes, levels of lead on the hand can be much higher and may 
exceed 100 ug. 

The amount of dust which may stick to a child's hand has been 
determined experimentally by Duggan and Williams (1977). It appears 
that 2 mg of dust may easily stick to each finger of the irioist hand of 
a child. No information is available about the average amount of 
lead and/or dust present on a child's hand during the day, as the data 
mentioned in Table 3.1 are essentially based on spot samples of 
un<nown representativity. 

At present, only rough estimates are possible regarding the 
amount of lead which can be ingested by mouthing children. If 10 mg 
of dust with a lead content of 300 mg kg is ingested daily, this 
would contribute 3 pg to daily intake. If, however, 100 mg of dust 
with a lead content of 1,000 mg kg is ingested daily, the 
contribution would be 100 ig. In other words, the contribution may 
be small or large in relation to the food contribution which will be 
discussed later in Chapter 6. 

The available data on mouthing frequency, hand lead levels and 
hand dust levels suggest that the ingestion of soil and dust particles 
may be an important pathway of environmental lead to children. In 
the assessment of importance, only indirect evidence is available; 
this evidence consists of associations between blood lead, and soil, 
dust or hand lead, which will be discussed in Chapter 7. 

Most probably, the between-person variability of the factors 
which influence the ingestiun of soil and dust particles is large; at a 
certain level of environmental pollution, some children may ingest 
much larger amounts of lead than will others. Although several of 
these factors are hard to quantify, an attempt should be made to 
incorporate them into the design of studies on lead intake from the 
environment by children. 

4. The concentration of lead in blood as a measure of 
internal exposure 

The concentration of lead in blood (Pb3) is widely regarded to be the 
most relevant indicator of biologically active lead in the human body 
(Zielhuis 1974, 1975; WHO 1977a; Zieihuis and Wibowo 1978; Ntional 
Research Council 1980; Ratcliffe 1981). 

In adults, the half-time of lead in blood has been estimated to be 
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about 20 days in studies of an experimental nature (Rabinowitz, 
Wetherill and Kopple 1973, 1974, 1976, 1977; Chamberlain et al. 
1975, 1978; Gross 1981). After continuous, heavy exposure, however, 
the half-time seems to be prolonged due to the slow release of lead 
from bone into blood (Hammond 1982; O'Flaherty, Hammond and 
Lerner 1982; Kang, Enfante and Carra 1983). 

A three-compartment model for the metabolic behaviour of lead 
in the adult human body has been proposed by Rabinowitz et al. 
(1976). The model was derived from an experiment in which subjects 
ingested 300-360 ng of lead daily and is shown in Figure 4.1. 

7 .ug/day 

7 ig/day 

diet 

48 

blood 

g/day 

15 ig /day 

3 ig/day 

soft 

tissue 

0.6 mg 

12 ig/day 

bone 

- 200 rug 

36 g/day 

urine 
	 bile, hair, etc. 

total amount of lead in compartment 

Figure 4.1 	Three-compartment model for metabolic behaviour 
of lead in the adult human body according to 
Rabinowita et al. (1976) 
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In adults, who are in a steady state, more than 90 per cent of the 
total body burden of lead is in the skeleton where it has an extremely 
long half-time of approximately 20 years. In children, the 
concentration of lead in the skeleton is much lower than in adults 
(barry 1981). There are no direct data on the blood lead half-time in 
children. David, Weintrob and Arcoleo (1982) measured blood lead in 
29 children aged 4.3-11.6 years on four occasions spaced one month 
apart to evaluate the stability of the blood lead concentration. The 
differences in the average blood lead concentrations were generally 
insignificant, and the correlations between measurements were from 
0.72 to 0.81, indicating a reasonable stability of blood lead over time 
in these children. The average blood lead concentration in these 
children was 25 jig 100 m2', which indicates that the daily intake 
of lead was rather high. 

A recent study by Rabinowitz, Leviton and Needleman (1984) on 
blood lead concentrations of children aged less than two years showed 
that at this age the correlation between serial blood lead 
determinations was low (less than 0.5). Only the correlation between 
blood lead levels determined at 1.5 years and 2.0 years of age was 
higher at 0.61, although this is still lower than the David et al. (1982) 
findings. The blood lead levels of the children in this study were 
generally below 10 jig 100 rji' and this may mean that the relative 
error in the blood lead determinations was larger than in the David et 
al.(1982) study. Comparison of the results of these two studies 
suggests that at very young ages and/or at low levels of exposure, the 
measured concentration of lead in children's blood is more variable 
than at higher ages and/or higher levels of exposure. More specific 
data are necessary before conclusions can be reached concerning the 
use of single blood lead determinations as an index of internal 
exposure in studies on very young child populations 

It is important to express the short-term, within-subjects 
variability of blood lead as a percentage of total variability, as Lucas 
(1981) has pointed out. If within-subjects variability is large 
compared with total variability, there is not much between-subjects 
variability left which could be explained by differences in lead 
exposure. IJsirig data from four studies performed between 1965 and 
1975, Lucas (1981) has asserted that within-subjects, variability is 
usually more than 50 per cent of total variability of blood lead, and 
that this more or less invalidates the use of blood lead as a health 
effect indicator of internal exposure in environmental exposre or 
health effect studies. Angle and Mclntire (1979) reported that in 
their study more than 60 per cent of observed blood lead variability 
was true between-subjects variability. This study was performed in 
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the years 1971-1977. 
The correlation coefficients reported by David et al. (1982) can 

be used to estimate the proportion of total variability which is taken 
up by between-subjects variability (cf. Chapter 7.4). This is 
consequently 72 to 81 per cent. A recent study by Delves, Sherlock 
and Quinn (1984) has shown that EbB values in adults who were only 
exposed to environmental lead were very stable over a period of 7-11 
months. In men who had an average PbB value of 12.2 ig 100 rnt', 
the within-subjects variance of about 0.3 was small relative to a total 
variance of 5.0, and even in women who had an average Pb13 value of 
8.5 ig 100 rnQ' and a total variance of only 1.5, the within-subjects 
variance of about 0.3 was small. The most recent study used Dy 
Lucas (1981) was the Southern California Study performed in 1974 by 
Johnson, Tillery and Prevost (1975). In this study, a second blood 
sacriple was taken from the same subjects one week after the first 
sample. In 1976, the same investigators studied a population living in 
Dallas using the same protocol, and in this study the within-subjects 
variance of the blood lead concentrations was much smaller than in 
the first, leading the investigators themselves to doubt the quality of 
their own blood lead analysis in the first study (Johnson et al. 1978). 
It would seem that the recent studies just cited prove the blood lead 
concentration to be a much more usable variable than Lucas (1981) 
suggested. 

Part of the within-subjects variability of blood lead is associated 
with the error of sampling and analysis. As the concentration of lead 
in blood is low, care should he taken to obtain uncontaminated 
samples; venous blood samples generally offer better opportunities 
for avoiding contamination than do capillary samples (Johnson Ct al. 
1978; Angie and Mclntire 1979; Mahaffey et al. 1979). The chemical 
analysis of the samples requires skill and experience; participation in 
some blind interlaboratory control programme is necessary to 
naintain a high standard of performance (Maher, Roettgers and 
Coulon 1979; Hunter 1980; Berlin 1982; Vahter 1982; Colinet 1983; 
Zwennis 1984). In recent years, much effort has been devoted to 
improving the quality of sampling and the analysis of blood lead, and 
within the same laboratory the relative standard deviation 
(coefficient of variation) of sampling and analysis may be below 
10 per cent (Saltzmnan, Meager and Meiners 1983). 

Compared with the effort devoted to improving sampling and 
analysis practices (which, in itself, is completely justified), 
surprisingly little work has been done to define total, within-subjects 
variability of blood lead concentrations over a given period of time. 
As will he argued more fully in Chapter 7, Section 4, it is the ratio 
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between within-subjects variability over time and between-subjects 
variability, and not the analytical error alone, which determines the 
usefulness of PbB as an indicator of internal exposure in 
environmental exposure and health effect studies. 

Few studies have attempted to establish a quantitative 
relationship between lead intake and blood lead in children. Ryu et 
al. (1983) studied the relationship between dietary lead intake and 
blood lead in 29 children of 0-6 months of age. Judging by the 
average blood lead level of the mothers of the study children, which 
was 9.6 ig 100 ml', prenatal exposure had been low. Dietary lead 
intake was established by measuring lead in human milk for four 
breast-fed infants, and by supplying infant formula of a known and 
repeatedly checked lead content to the parents of the remaining 25 
children for a period of four months after birth. On average, dietary 
lead intake was only 17 'g d - '. After four months, the average 
blood lead level was 6.1 ig 100 mt'. For another period of two 
months, 17 children remained in the study, 10 of which were kept at a 
dietary lead intake of 16 g d - '. Their blood lead level was 
7.2 'g 100 m' at the end of the study period. The remaining seven 
children received canned infant formula and/or milk in this period, 
and their average dietary lead intake was 61 ig d'. At the end of 
the study period, their blood lead level had increased to 
14.4 jig 100 mv'. These data suggest a distinct curvilinearity of 
the PbB/lead intake relationship, as a fourfold increase in intake only 
doubled the resulting PbB level. 

In a study performed in Scotland, bottle-fed infants were shown 
to have an average blood lead level of 14 jig 100 mi' at a dietary 
intake of only about 10 jig d'. The average blood lead level was 
23 jig  100 rnL' at intakes of 50-70 'g d', and 30 jig 100 ml.t at 
an intake of 160 jig d' (DOE 1982). At comparable levels of lead 
intake, the PbB levels in the Scottish study were higher than in the 
study by Ryu et al. (1983). There is no ready explanation for this 
difference. 

5. Factors other than lead intake which affect 
the concentration of lead in blood 

It has already been discussed that lead absorption from the gut is 
higher in children than in adults, but that the concentration of lead in 
blood is not necessarily higher in children than in adults, indicating 
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that the excretion of lead and/or the transfer to bone are also higher 
in children than in adults. 

There are a number of factors which potentially affect the 
concentration of lead in blood in children at a given lead intake. 
Absorption, excretion and distribution patterns vary with age, which 
makes age a prime selection variable in studies concerning 
environmental lead and blood lead in children. 

Various nutritional factors have been implicated as determinants 
of PbB. The intake of calcium and phosphorus are inversely related 
to PbB and/or to lead uptake from the gut (Barton, Conrad, Harrison 
and Nuby 1978; Heard and Chamberlain 1982; Blake and Mann 1983; 
Blake, Barbezat and Mann 1983; Heard, Chamberlain and Sherlock 
1983); a high intake of fat seems to cause a higher absorption of lead 
from the gut (Baritrop and Khoo 1976; Bell and Spickett 1983); milk 
consumption was shown to be inversely related to PbB in two 
observational studies (Johnson and Tenuta 1979; Brunekreef et al. 
1983) and in one human experiment (Blake and Mann 1983). This 
probably indicates the importance of milk or milk products in the diet 
as a source of calcium. In animal experiments the milk component 
lactose has been shown actually to enhance lead uptake from the gut 
when lead and milk are consumed together (Bell and Spickett 1981; 
Bushnell and De Luca 1981). The experiments by Bushnell and De 
Luca (1981) were done, however, at unrealistic levels of lactose 
consumption, and recent data suggest that at normal levels of intake, 
lactose does not increase lead uptake from the gut (Bushnell and Dc 
Luca 1983). 

A study by Kostial and Kello (1979) has suggested that the 
retention of lead administered in the stomach by tube is greater in 
rats fed with cow's milk than in rats fed with 'solid' human diets. 
This may be due to the greater absorption of lead administered in 
fluids than in solid food, as is discussed later. As mentioned earlier, 
milk consumption has been shown to decrease lead retention in a 
human experiment (Blake and Mann 1983). Iron and zinc deficiency 
have also been associated with increased lead absorption from the gut 
(Watson, Hume and Moore 1980). 

In the U.S.A., 65 per cent of all two- to three-year-old children 
were reported to receive less than the recommended dietary 
allowance (RDA) of calcium, and 98 per cent were reported to 
receive less than the RDA for iron (McCabe 1979; Babich and Davis 
1981). It is not clear, however, whether all these children were 
'deficient' to an extent that the absorption and/or toxicity of 
ingested lead were being enhanced. 

Recent evidence suggests that lead compounds in water ingested 
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by fasting individuals are absorbed much more efficiently than when 
taken in solid food (Rabinowitz, Kopple and Wetherill 1980; Heard et 
al. 1983). After fasting for 12 hours, about 50 per cent of lead 
ingested via drinking water was absorbed. When taken with a meal, 
absorption was only 3-7 per cent. Other studies (Blake 1976; Moore, 
Meredith, Campbell and Watson 1979c) suggest that even after two 
hours of fasting, absorption is still about four times greater than 
when lead is ingested in a meal. The important and tentative 
implication of this is that lead consumed in drinking water and dust is 
more important than equal amounts of lead consumed via solid food, 
in so far as drinking water and dust are ingested between meals. It 
may only be presumed that these results are valid for children as well. 

The chemical form in which (inorganic) lead is administered does 
not seem to have a large influence on the uptake from the gut 
(Karhausen 1972; Barltrop and Meek 1975; Mahaffey 1983); the size 
of the lead particles seems to be more relevant (Baritrop and Meek 
1979), with the small particles being more effectively absorbed than 
the large ones. This is particularly relevant to exposure to paint 
lead, as it implies that ingested paint flakes do not contribute as 
heavily to intestinal absorption as their lead content would suggest. 

Seasonal variation of children's blood lead is sometimes 
observed, and it has been suggested that exposure to sunlight is its 
main cause (Hunter 1977). One proposed rnechanisrri is that in 
summer vitamin D is synthesized in the body, and that vitamin 0 
increases the absorption of lead from the gut. It has, however, been 
demonstrated that the active vitamin D metabolite in this respect is 
1,25 dihydroxycholecalciferol, which has no seasonal variation, and 
that the metabolite 25 hydroxycholecalciferol, which does show 
seasonal variation, does not affect lead metabolism (Rosen et al. 
1980; Chesney et al. 1981; Mahaf fey et al. 1982). Other explanations 
for seasonal variation of blood lead have been proposed, such as 
increased exposure to pollution during outdoor play or through 
seasonal variations in petrol consumption (Einbrodt et al. 1975; 
billick, Curran and Shier 1980). In some studies, seasonal variation 
of blood lead was absent (McCusker 1979). 

It is not easy to decide which meaningful variables should be - 
and could be - incorporated in the design of studies on blood 
lead/environmental lead relationships. Age in itself is important, and 
age is also related to many of the factors mentioned in this section. 
Selection of a specific age category, or incorporation of the age 
variable in the analysis of the data seems a necessity in any study. 
Some consideration of nutritional factors would also be useful. In 
addition, it would be better to conduct studies within a short period 
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of time, to avoid seasonality effects on the outcome of the study. 

6. Identification of confounding factors 

In addition to the dependent variable under study, it is necessary to 
identify and control or eliminate the effect of confounding or 
interfering factors. What is a confounder or what is the variable of 
interest in a specific study depends largely on the hypotheses to be 
tested. If the influence of air lead on blood lead is to be 
investigated, then tap water lead and food lead are (potential) 
confounders, while air lead would be a (potential) confounder in a 
study on the relationship between dietary lead intake and blood lead. 
If the impact of traffic emissions on blood lead is to be evaluated, all 
lead in the environment which does not originate from traffic is a 
potential confounder of the traffic lead/blood lead relationship, and 
attempts should be made to design and/or analyse the study so that 
the effects of traffic lead and lead from other sources can be 
separated. 

Theoretically, all sources and pathways mentioned in Figure 1.1 
should be considered in the design phase of a study either as 
determinant, potential confounder or selection variable, that is to say 
studies can be restricted to areas where one or more sources are of 
negligible influence. The various environmental sources and 
pathways have already been described in Chapter 2. Food lead, tap 
water lead and other factors are treated here. 

6.1. Presence and origin of lead in food 

Lead in food is a potential confounder of associations between 
environmental lead and blood lead in a limited sense only. As will be 
discussed later, some lead in food originates from environmental 
pollution. In industrialized countries, however, the food that people 
consume is usually not grown at or near places where people live and 
where people may be exposed to environmental pollution. It is 
consequently defensible to assume that associations between food 
lead and environmental lead are non-causal if these are found to exist 
in an urban study area. As mentioned in Chapter 1, Section 1.2, a 
child is born with a blood lead level somewhat lower than its 
mother's. After birth, breast milk, bottled milk and children's 
formulae are the main sources of lead in the first months of life. 

23 



A recent review on chemical contaminants in human milk 
suggests that the concentration of lead in breast milk is mostly in the 
range of 5-20 iAg 1 in women living in industrialized countries 
(Jensen 1983). A more recent study in a British urban population has 
shown that at maternal Pbb levels of about 10 ig 100 mt', the lead 
content of breast milk was only 2 tg t ' (Kovar, Strehlow, Richmond 
and Thompson 1984) and in a study among urban and rural women 
living in Arizona, U.S.A., it was only 3 1,Lg t' (Rockway, Weber, Lel 
and Kimberlirig 1984). 

Recent data on lead intake through food by young children are 
compiled in Table 6.1. Most estimates are based on market basket 
studies, i.e. studies in which the lead content of individual food items 
of a representative diet is being measured. There are some 
indications that market basket studies tend to overestimate 'reaP 
lead intake, as estimated by duplicate diet studies. In a study in the 
U.K., Sherlock et al. (1983) estimated the dietary lead intake of 
adults in the area under study at 770 ug w' , whereas a duplicate 
diet study in the same area resulted in an estimated lead intake of 
500 'g w '. A recent market basket study from Belgium estimated 
total daily lead intake for adults to be 282 iig d - ' (Fouassin and 
Fondu 1981) whereas a duplicate diet study, performed at the same 
time, resulted in an estimated daily lead intake of 96 g  (Buchet, 
Lauwerys, Vandevoorde and Pycke 1981, 1983). 

In The Netherlands, one market basket study performed in 
1974-1975 resulted in an estimated daily lead intake for adults of 
135 pg (Ellen 1977). In a later publication containing data on the 
period 1974-1978, this figure was reduced to 92 .tg d. Both 
estimates did not take lead intake via drinking water into account. A 
duplicate meal study was performed in the years 1976-1978, and 
resulted in an average intake of 107 ug d -  I , including drinking water 
(Anonymous 1980). The data in Table 6.1 range from a very low 
intake of only a few g per day for breast-fed infants to somewhat 
over 100 pg  per day for children of ages well into their teens from 
the Federal Republic of Germany. The other 11 studies all indicate 
daily lead intakes of about 20-8 0 ig d'. 

At present, it is not difficult to find populations of children in 
industrial countries with an average blood lead level below 
10 g 100 rnt' (Taskinen, Nordman and Hernberg 1981; l3runekreef 
et al. 1983; Rabinowitz and Needleman 1984). Although this is a 
matter of speculation in view of the limited available evidence, the 
data from the studies by Ryu et al. (1983) and by the U.K. 
Department of the Environment (1982) suggest that in these 
populations dietary lead intake may even be well below 50 pg  d- 1• 
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Table 6.1 Daily lead intake via food by young children 

Reference Daily dietary lead 
intake (i'g) 

Remarks 

Bander, Morgan 49 ± 38 (SD) Children less than 1 year 
aiid Zabik 1983 U.S.A. 

55 ± 21 1-2 years 
56 ± 22 2-3 years 
65 ± 24 3-4 years 
65 ± 29 4-5 years 
74 ± 33 5 years 

Market basket study 

Biddle 1982 21 - 36 Infants, U.S.A. 
1975-1980 

28 -46 Toddlers, U.S.A. 
1975-1980 

Market basket studies 

l3oppe1 1975 45 Infant formulae, F.R.G. 

Department of the 10 - 160 Bottle-fed infants 
Environment 1982 Intake depends on water 

lead concentration in 
area under study 
(Glasgow, U.K.) 

Haschke and Stef fan 50 - 80 Children 1-6 months 
1981 Austria 

3ohnson, Manske, 20 - 30 Infants and toddlers 
New and Podrebarac, U.S.A. market basket 
1981, 1984 studies, 1975-1977 

Kirkpatrick et al. 17 - 81 Children of <1 year 
1980 Market basket study 

Ca nad a 

Kovar et al. 1984 2 - 3 On the basis of lead in 
Larsson, Slorach, Hagman breast milk (± 2 ig kg'l) 
and l-Iofvander 1981 in Sweden and the U.K. 
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Table 6.1 (continued) Daily lead intake via food by young children 

Reference 	 Daily dietary lead 	Remarks 
intake (rig) 

Reith, Engelsman and 	42 	 Children 1-4 years 
van Ditmarsch 1974 	 The Netherlands 

Market basket study 

Stolley, Kersting 	 95 - 142 	 Children 2-14 years 
and Droese 1981 	 F.R.C. 

Market basket sthdy 

Woidich and 	 6 - 80 	 Infants and toddlers 
Pfarinhauser 1980 	 F.R.G. 

Ryu et al. 1983 	 16 - 17 	 Infants under 1 year 
U.S.A. 
Infant formulae and cow's 
mu k 

Canned formulae and 
canned milk 

Whether lead in food is an actual confounder in studies on the 
relationship between environmental lead and blood lead in children 
depends on its association with environmental lead. To the author's 
knowledge, no study has ever systematically compared the lead 
content of diets consumed in urban and suburban areas. In The 
Netherlands, food consumption patterns have been compared for 
different categories of workers' families (Centraal Bureau voor de 
Statistiek 1979). In the years 1974/1975, workers' families tended to 
buy more food per person in the major lead containing food groups 
when their level of income was higher. It was reported (Anonymous 
1980) that almost 80 per cent of total dietary lead intake in The 
Netherlands came from bread, cereals, potatoes, vegetables, fruits, 
wine and spirits, meat, milk and milk products. When it is assumed 
that wine and spirits are not consumed by pre-school children, the 
differences in the amounts of lead in food bought per person would 
amount to 10 per cent at most between the income strata of workers' 
families and higher income categories, who purchase food with higher 
lead levels. 
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The origins of lead in food have not been quantified in detail. 
Chamberlain (1983b) has argued that on the basis of I I  'Pb/stable Pb 
ratios of outdoor lead deposition and human diets, probably only 
13 ig of lead per day in an adult diet in the 1J.K. comes from 
vehicular traffic. For children, this would then probably amount to 
no more than 7 ug per day, and the relative contribution of traffic 
lead to dietary lead for children would then come to depend on riow 
much lead a child actually ingests with food. A study frorn Italy 
(Facchetti and Geiss 1982) has suggested that at least 46 per cent of 
the lead in children's blood originates from automobile traffic. In 
this study, the isotopic ratio of lead in gasoline in the Turin area was 
changed for a number of years, with the explicit goal to evaluate the 
importance of gasoline lead as a source of lead in human blood. 
Samples of air, food, blood, etc. were taken to evaluate the 
contribution of gasoline lead to blood lead. Pre-school children 
became involved in the study only at the halfway stage and numbered 
less than ten (Elwood 1983b). For this reason, the estimated 
percentage for children cannot be considered as very reliable. 
-luman populations living in remote, non-industrial areas have been 
shown to have average blood lead levels between I and 
5 pg  100 m9, although in one study the PbB value was much 
higher. Hecker, Allen, Dinman and Neel (1974) studied a number of 
Yanornamo Indians living in the area drained by the Upper Orinoco 
River and its tributaries in southern Venezuela. Their average blood 
lead concentration was only 0.83 ag 100 m2 and significantly 
lower than the average blood lead concentration (14.6 ug 100 mt) 
of a control population living in the U.S.A. which was studied using 
the same methods of sampling and analysis. 

Poole, Smythe and Alpers (1980) studied a population of seven-
to ten-year-old children living in the remote Eastern Highlands 
Province of Papua New Guinea; the children's diet contained small 
quantities of canned food, and their average blood lead concentration 
was 5.2 ug 100 rnt'. 

Piomneili et al. (1980) studied a population of children and adults 
living in the remote Manang district of Nepal and found a mean blood 
lead concentration of 3.4 pg  100 rn2 without apparent differences 
between children and adults. Hansen, Krornann, WuIf and Albøge 
(1983) studied a population living in the isolated district of 
Angmagssalik in East Greenland; males were found to have an 
average PbB value of 14.8 ug 100 rnt, amid females an average of 
12.8 'g 100 mt - '. For Danes living in the Arhus (urban) area, values 
of 10.5 and 7.7 ig 100 rnQ' respectively were found, using the same 
methods. There was no explanation for this unexpected finding. 
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Thus in some remote populations, PbB values were so low that it 
is most probable that their food contained much less lead than the 
food of people living in industrialized countries. 

Sources other than vehicular traffic contribute to lead in food, 
notably lead soldered cans (Crowell 1980; SchaLfner 1981; Ludwigsen 
1982; (Moore 1934). These containers, however, are now being 
replaced in most countries by cans which do not contribute lead to 
the food to the same extent. It is unclear to what extent other 
industrial food preparation processes contribute to leac in food. 
Scattered references indicate that the contribution is negligible from 
mechanical deboning of meat (Forschner and Wolff 1981) and other 
industrial meat handling processes (I -lecht, Schramel, Moreth and 
Schinner 1980 and that some processes may even decrease the lead 
content of food (Bielig and Hofsommer 1980). In urban areas, food 
may become polluted with lead during transport, handling, storage 
and display (Beaud, Rollier and Ramuz 1982), or during preparation 
(Gallacher et al. 1984c) and cooking when the water used contains 
lead (Moore, Hughes and Goldberg 1979b; Little, Fleming and Heard 
1981; Smart, Warrington and Evans 1981; Smart, Warringfon, Dellar 
and Sherlock 1983; Haring 1984); if the lead concentration of the 
water is not elevated, then the cooking process does not change the 
lead content of food (Schelenz and Boppel 1982); in fact, cooking may 
even decrease the lead content if soft water is being used (Flaring 
1984). (Soft water contains less than 3 milli.-equivalents of cations 
per litre). 

All of this means that the proportion of lead in the ciet 
originating from traffic will vary from situation to situation, and it is 
probably naive to try to attribute any precise number to this 
proportion, as Moore (1983) has aptly pointed out. 

6.2. Lead in tap water 

If lead is present in a water supply system, the concentration of lead 
in tap water may be greatly elevated (Eleattie et al. 1972; Goldberg 
1974; Elwood, St Leger and Morton 1976; Moore 1977; Flaring 1978, 
1984; Moore et al. 1978, 1979a; Thomas, Elwood, Welsby and St Leger 
1979; Sartor and Rondia 1980, 1981; Thomas 1980; Moore, Goldberg, 
Fyfe and Richards 1981; Sartor, van Beneden and Rondia 1981; 
Thomas, Elwood, Toothill and Morton 1981; McIntosh et al. 1982; 
Moore et al. 1982; Sharrett, Carter, Orheim and Feinleib 1982a; 
Sharrett et al. 1982b; Moore 1983; Focock et al. 1983; Sartor, 
Manuel, Rondia and Geubelle 1983; Elwood 1984). 

Studies from Belgium and the U.K. especially have shown that in 
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some areas blood lead levels in adults as well as in children may rise 
well above accepted standards due to a high lead concentration in tap 
water (Sartor et al. studies; Moore et al. studies). 

The plumbosolvency of drinking water has been shown to depend 
largely on p1-I (Moore 1973, 1983; Raring 1983, 1984) so that in areas 
where pH is low, much lead is dissolved from pipes and storage 
tanks. Alterations of pH by adding lime have shown a great reduction 
in the lead concentrations in tap water even if lead pipes are not 
being replaced and it has been shown that these alterations have 
produced marked reductions in blood lead levels as well (Moore 1983). 

It has been suggested that the reduction in blood lead levels can 
partly be caused by an increased Ca intake with water, and that this 
has led to some overestimation of the contribution of water lead to 
total lead intake (Bryce Smith and Stephens 1981; Elwood and 
Galiacher 1984). In the Glasgow study, lime was increased to a 
concentration of about S mg Y- . At a normal Ca intake of about 
530-800 rug d', however, this would not seem to make a significant 
contribution to total Ca intake (Mahaffey 1974; Koivistoinen 1980; 
de Wijo and var' Staveren 1983). In The Netherlands, the Ca content 
of drinking water was shown to range from 20 to 117 rng 9- - ' in a 
survey conducted in 19 different communities (Raring 1984). In 
Glasgow, however, the Ca content of drinking water was originally 
only 0.33 mg 9- t (Moore 1973). 

The higher absorption rate of lead administered via water 
compared with lead administered via food makes tap water lead a 
potentially much more important contributor to total lead uptake, 
even at relatively low levels of water lead, than seems to have been 
realized. Elwood (1984) has remarked that the omission of water lead 
from epidemiological studies on blood lead/environmental lead 
relationships in children raises serious questions about the validity of 
the resulting equations. 

6.3. Other potential confounders 

Alcohol consumption and tobacco smoking have been shown to be 
related to blood lead levels of adults (Wibowo, del Castilho and 
Zielhuis 1977; Ducoffre et al. 1980; Awad, 1-luel, Lazar and Boudne 
1981; Grandjean, Olsen and Hollnagel 1981; Shaper et al. 1982; 
I3ortoli et al, 1983; Brockhaus et al. 1983; Pocock et al. 1983; Perrelli 
et al. 1984). 

Neither habit is generally present in young children, however, 
and the fact that the smoking effect on adult blood lead levels has 
been small in the majority of studies suggests that 'passive smoking' 
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by children is not an important pathway. 
Objects like glazed pottery (Acra, Dajani, Rafoul and 

Karahogopiari 1981), printed matter (Bogden, Joselow and Singh 1975; 
Eaton, Fowles Thomas and Turnbuil 1975), household articles in 
general (Horiguchi, Kurono and Teramoto 1982), electric kettles 
(Wigle and Charlebois 1978), toothpaste (Berman and MciKiel 1972) 
and cosmetics (Anonymous 1979) have been mentioned as potential 
sources of lead for children. Do-it-yourself enthusiasts have been 
warned that, for example, improper removing of old paint layers in 
old homes may cause elevated air lead and dust lead concentrations 
(Inskip and Atterbury 1983). Although these factors may be 
significant for individuals, they do not usually seem to have a 
detectable influence on average population blood lead levels. 

In the U.S.A., children of a different race have repeatedly been 
shown to have different blood lead levels (Billick et al. 1979, 1980; 
Quah, Stark, Meigs and Delouise 1982; Stark et al. 1982a; Annest et 
al. 1983). As race, socio-economic status and living conditions in 
general are related, it is not clear whether these PbB differences are 
caused by innate factors or mostly by external factors. In the U.K. 
as well, higher blood lead levels have been reported in children of 
Asian origin, compared with Caucasian children (Josephs 1977; 
Archer, Giltrow and Waldron 1980; Strehlow and Barltrop 1982). It 
has been suggested that the use of surma, a lead-containing cosmetic, 
by Asian women may contribute to this (Josephs 1977) but dietary 
factors may he more important (Strehlow and Barltrop 1982). 

Shortly after birth, children of different gender generally do not 
have different PbB levels (ci. for example Rabinowitz and Needleman 
1984), but when children grow older, boys and girls 'nay have 
different blood lead levels. Age is related to a number of factors 
which influence blood lead levels and, as a consequence, PbB levels 
exhibit a peak at ages of about 3-6 years in some populations, but not 
in others (Duggan 1983a). 

Several factors which tend to increase the blood lead 
concentration at a given exposure level, like mouthing, Ca 
deficiency, inadequate child care, etc. may very well he more 
prevalent in areas where lead pollution is also more severe, as people 
of low socio-ecoriornic status will have less opportunity to move away 
from polluted living areas near industrial lead sources or in inner 
cities with high traffic densities. 

The impact of a given amount of lead in the environment on 
children's blood lead may consequently be larger in inner cities than 
in suburbs. 
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7. Epidemiology of lead intake from the environment 
by children 

7.1. Preface 

Experimental studies on lead intake from the environment by children 
have not been performed. Therefore, to investigate the associations 
between environmental lead and blood lead in children, mainly 
observational studies must be relied upon (although it is sometimes 
possible to take advantage of changes like emission reductions, 
clean-up operations and the opening of new roads or factories). Such 
studies are of an epidemiological nature. 

In the past 20 years, concern over the potential health effects of 
environmental pollutants has reached a high level in many developed 
countries. The resulting pressure to do agent-orientated 
epideiniological studies has emphasized the general problem of how 
to decide that an agent-orientated study has any chance of detecting 
a specified health effect in environmental epidemiology in particular 
(Lyon, Klauber, Graff and Chin 1981; Stebbings 1981; Stinett, F3uffler 
and Eifler 191). In studies on the relationship between 
environmental lead and blood lead in children, the concern is not so 
much with some specific health effect of lead, but with the 
concentration of lead in blood as an indicator of internal exposure 
and risk to health. In making quantitative estimates of relationships 
between environmental lead and blood lead in children there are some 
specific issues which merit attention - curvilinearity of the blood 
lead/lead exposure relationship, the causal structure of the 
exposure/response system and the reliability of the exposure 
variables. A tabulated summary of quantitative exposure-response 
estimates from observational studies concludes this chapter. 

7.2. Curvilinearity of the relationship between environmental lead 
and blood lead 

For children as well as adults, the relationship between blood lead 
and environmental lead has repeatedly been shown to be curvilinear 
in the sense that PbB/exposure is smaller at high levels of PbB than 
at low levels of PbB (i-hammond, O'Flaherty and Gartside 1981; 
Chamberlain 1983a; Laxen 1983; cf. Figure 7.0. The mechanisms 
behind this are not fully understood, and could include reduced 
absorption from the gut, altered distribution within the body and 
increased excretion (Hammond et al. 1981). 
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It has been suggested that the departure from linearity is not 
great at low levels of Pb13 (Chamberlain 1983a), but the recent 
results of the study by Ryu et al. (1983) seem to contradict this, as 
discussed in Chapter 4. The curvilinearity of the relationship can be 
taken into account by relating log PbB to log exposure, or by relating 
PbB to some exponential of the exposure variables (Moore et al. 1982). 

If downward curvilinearity is present in the data, a log/log 
relationship results in which the regression coefficient of log PbE3 on 
log (exposure variable) is less than one. A straight line relationship 
results in a log/log relationship with a regression coefficient of 
exactly one, and a curvilinear upward relationship results in a 
regression coefficient >1. The general consequence of the downward 
curvilinearity is that APbBAexposure relationships obtained at 
different levels of Pb13 cannot be directly compared; one inay expect 
a stronger effect of a given exposure change at low levels of Pbi3 
than at high levels of PbB. 

PbB 

AE, 	 AF, 	 Exposure 

Figure 7.1 	Curvilinear dependence of blood lead on 
lead exposure. 

7.3. The causal structure of the exposure-response system 

From the preceding sections it is clear that many variables 
potentially influence the concentration of lead in blood, and that 
many of these are interrelated. In the analysis of the data, the 
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presumed causal ordering of the variables must be carefully taken 
into account. If, for example, more lead piping is present in old 
homes than in new ones, the age of the home and the concentration 
of lead in tap water will be related. If both are evaluated together as 
determinants of blood lead, one may find that water lead becomes 
insignificant after adjustment for home age. This is an artefact, as it 
does not mean that water lead has no influence; it is merely 
represented already by home age. Usually some environmental 
exposure variables will also be correlated with each other. 
Sometimes several exposure variables are entered into an equation as 
explanatory variables together (Angle and \4clntire 1979; Snee 1982; 
EPA 1983). This is justifiable as an attempt to separate their 
respective effects on blood lead, but the partial regression 
coefficients obtained do not adequately describe what will happen to 
the blood lead concentration when the input of lead into the system is 
changed. If, for example, lead in air changes because of a reduction 
of lead in petrol, in the long run lead in dust will be reduced as well. 
The partial regression coefficients of blood lead on air lead (PbA) 
cannot be used to predict the effect on blood lead of such a reduction 
in petrol lead without also evaluating the pathway through dust. The 
partial PbP/PbA underestimates, in other words, the PbB/petrol 
lead relationship. It is therefore questionable to use partial 
PbB/PbA relationships for setting air lead standards (as, for 

example, was done in the U.S.A., Cf. EPA 1978), as such a procedure 
tacitly assumes that air lead can be manipulated without affecting 
lead in other environmental pathways. 

It should be emphasized that evaluating the structure of the 
exposure response system is a largely nonstatistical issue which 
requires detailed knowledge of the specific research area. 

7.4. Variability of exposure and outcome variables 

It is well known from regression theory that the results of regression 
analyses are affected by random errors in both the exposure and the 
outcome variables (Snedecor and Cochran 1967; Cochran 1968; 
Draper and Smith 1981). Generally, random errors in the outcome 
variable reduce the correlation coefficient, but not the regression 
coefficient of the outcome variable on some predictor. In other 
words, an association which is significant in reality may go 
undetected, but the size of the regression coefficient is none the less 
an unbiased though unstable estimate of the size of the effect. 

iandom errors in an explanatory variable not only decrease the 
correlation coefficient, but bias the regression coefficient toward 
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zero as well (Cochran 1968; Draper and Smith 1981). It is therefore 
of interest to reduce as much as possible random errors in both the 
outcome and the explanatory variables. 

An interesting observation at this point is that, in the past, 
considerable effort has been devoted especially to reducing the error 
of the blood lead determination - but that this error has been rather 
narrowly defined as the error associated with sampling and analysis. 
Likewise, in lead exposure studies the error analysed and reported (if 
at all) is usually the error associated with sampling and analysis. 

A typical exposure-response study may thus consist, for each 
subject, of a single blood lead determination, an air lead study of 
some duration and single or duplicate samples of soil, dust, drinking 
water, etc. taken on one occasion only. It is assumed that the values 
obtained are representative for periods of one to a few months as the 
outcome variable, blood lead, is usually taken to represent recent 
exposure in terms of one to a few months (cf. Chapter 4). 

It would therefore be more useful to define the 'random error' 
of the outcome and the explanatory variables as the within-person 
variability over some period of time. In order to obtain an estimate 
of this type of error in the exposure variables, it is necessary to 
repeat the exposure measurements for a number of individuals, at 
least once in space, or in time, or in both. The type of exposure 
information which is required determines which is the best way to 
repeat the measurements. If, for example, variations in time are of 
less interest because some time-integrated measurement like 
long-term outdoor deposition has been performed, it is most useful to 
perform the measurements in the locations most frequently visited by 
the study subjects. For outdoor deposition, the measurements might 
then be performed in a few locations near the homes of the study 
subjects. An analysis of variance can then be performed, to estimate 
the 'within-subjects' and 'between-subjects' variance of the exposure 
indicator under study (Snedecor and Cochran 1967). The correlation 
coefficient between repeated measurements (cf. correlations 
between serial blood lead levels in children in papers by David et al. 
1982 and Rabinowitz et al. 1984) can also be used to estimate the 
'between-subjects' variance relative to total variance (Cochran 
1968). In Chapter 4 it has already been shown that the limited 
evidence available suggests that this type of error may very well be 
20-40 per cent of total blood lead variance. 

Although some information on variability of environmental lead 
exposure variables over space and time has recently become 
available, systematic evaluation of within- and between-person 
variability of lead exposure variables in epidemiological studies has 
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not been performed to date. 
This 	is 	unfortunate 	as 	regression 	coefficients 	from 

environmental exposure-response studies are currently being used as 
basic information for the derivation of air lead standards (EPA 1978, 
1983), and it would not seem in the interest of public health to use 
systematic underestimates of the 'true' blood lead/environmental 
lead relationship. 

In Appendix I, a brief mathematical treatment is given of this 
type of error, and the required analysis to estimate it. 

7.5. Summary of quantitative estimates of the impact of 
environmental lead exposure on blood lead levels in children 

In the literature, a number of studies have been published which 
contain data on environmental lead exposure variables and blood lead 
concentrations in children. These studies were usually not explicitly 
meant to produce quantitative estimates of blood lead/lead exposure 
relationships. In trying to obtain such estimates from them, a 
varying number of limitations must usually be accepted, such as 
incomplete or absent adjustments for confounders, mis-matching of 
exposure and response data, incomparability of exposure and/or 
response measurement methods across studies, etc. A detailed 
review of the studies used for compiling the tables presented in this 
section is given elsewhere (Brunekreef 1984, 1985). Where 
appropriate, short comments on individual studies will be supplied in 
the 'Remarks' sections of the Tables. 

The studies were divided into three groups - studies conducted 
near industrial lead sources (Table 7.1); studies conducted in urban 
areas without major industrial lead sources (Tab'e 7.2); and other 
studies, usually concerning exposure to soil and dust contaminated 
with lead from paint or from lead workers' clothes and shoes (Table 
7.3). 

In Section 7.2, it has been argued that the relationship between 
environmental lead and blood lead is curvilinear in the sense that a 
given exposure increment results in a larger increase of the blood 
lead concentration at low levels of exposure than at high levels of 
exposure. In principle, therefore, it is preferable to compare curves 
rather than linear relationships. But from most studies, curvilinear 
relationships could not be calculated, so it was decided to express the 
relationship between environmental lead and blood lead on a linear 
scale. 

The consequence of this is that results from studies performed at 
widely differing levels of exposure cannot he readily compared. 
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Where appropriate, the reader will be reminded of this when study 
results are likely to have been heavily mfluenced by unusually high or 
low overall exposure conditions. The relationship between 
environmental lead and blood lead will be expressed as a when the 
concentration of lead in air is the prime indicator of environmental 
lead pollution and a will be expressed as 'g 100 m2 1  (PbB) per i'g 
m 3  (lead in air PbA). If lead in dust or soil is the prime lead 
exposure indicator, the relationship between blood lead and 
environmental lead will be expressed as B. lJsually, B will be 
expressed as ig 100 (PbB) per g kg' (lead in soil, dust), 
although occasionally the rng rn 2  unit will be used for lead in dust. 
The units were chosen such that the a as well as the B values would 
mostly fall in the 1-10 range. 

7.6. Summary of results from smelter studies 

Table 7.1 contains a summary of the findings from II different 
smelter studies. The studies are numbered, and the references are 
given at the foot of the Table. 

Table 7.1 Summary of findings from smelter studies 

Study No. a estimate 	B estimate 	 Remarks 
(I) 	 (II) 	 (III) 

3.3 	 unadjusted; children 
3-6 years 

4.0 	 unadjusted; 8-11 years 

2 	 1.1-7.2 	 unadjusted; 2-14. years; 
depending on season 

0.4-2i (Id) 	unadjusted; depending 
on season 

3 	 4.0 	 unadjusted; 2-3 years; 
3.6 	 adjusted for parental 

education 	 - 
12.6 (s) 	 1-3 years; adjusted for 

parental education 
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Table 7.1 (continued) Summary of findings froin smelter studies 

Study No. cestimate 	estimate 
(I) 	 (II) 	 (Ill) 

4 
	

2.6-3.7 	11.7 (s) 
0.8 (hd) 

	

3.9 	5.3 (s) 
5.7 (sd) 

10.2 (hd) 
1.9 (Id) 

	

5.3 	3.5 (pd) 

5.3 11.2 (s) 
0.7 1.4 (s) 

8.3 (s) 
4.8 (s) 

12.5 

17.6 

2.4-3.3 5.2-7.3 (s) 
1.0-2.5 0.6 (s) 

Remarks 

1-19 years; unadjusted 
based on reduction of 
PbB and PbA over time 

0-10 years; unadjusted 
10-15 years; unadjusted 

pre-school age; un-
adjusted 

school age; unadjusted 

0-15 years; unadjusted 

10-15 years; adjusted 
for tap water lead and 
parental education 

0-6 years; unadjusted 
13-14 years; undjusted 
0-3 years; Trail only 
6 years; Trail only 

girls of 10-15 years; 
urmadj usted 

boys of 10-15 years; 
unadjusted 

1-9 years; unadjusted 
1-9 years; adjusted for 
parental occupation, 
house dustiness, age 
and one other lead 
exposure variable 

7 

8 

9 

Ce 

4 

5 
	

1.7 
1.6 

6 
	

1.8 

1.9 
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(1) 	Study No.1. Cavalleri et al. (1981); 2. EInbrodt et al. (1975), 
Rosmanith et al. (1975a, 1975b, 1976); 3. Krajric, Helleman, 
van Logten and van Esch (1977), Zielbuis et al. (1979), 
brunekreef et al. (1981), Diemel et al. (1981); 4. Laridrigan et 
al. (1975), Morse et al. (1979); 5. Popovac et al. (1982); 
6. Prpic-Majic et al. (1983, 1984); 7. Roberts et al. (1974a, 
1974b, 1975); 8. Roels et al. (1976, 1978b, 1980); 9. Neri et 
al. (1978), Schmitt et al. (1979); 10. Wagner et al. (1981); 
11. Yankel et al. (1977), WaIter et al. (1980). 

(11) 	a = Lig 100 m U I  (Pbb) per ug rri 3  (Pb air) 

(Ill) 	B = ig 100 mQ- I  per mg m 
Id = lead deposition 

B = ig 100 m2: per g kg 
5 	= soil 
hd = house dust 
sd = street dust 
pd = playground dust 

From the data in the Table it is clear that a wide range of 
values can be calculated from the different studies. Adjustment for 
confounders has been weak or absent in most studies. In studies 3 and 
8, adjustment for at least some confounders did not reduce t:ie 
estimates inuch, but in view of the many differences between studies, 
it cannot be assumed that this is the general rule. Unadjusted values 
below 2 generally stem from areas where PbF3 values were high 
(studies 5, 6, 11) or from older children (study 9). The majority of 
values are in the 2.4-5.3 range; the results of the Wagner et al. (1981) 
study (no.10) are evidently out of range. 

For soil lead, the unadjusted B values range from 4.8-12.6 ug 100 
mQ' per g kg 1 , if we exclude the low 1.4 value for 13- to 
14-ycar-olds in study 9. For house dust, the two available B values are 
very different (10.2 and 0.8 ig 100 mt per g kg_I). The two street 
and playground dust Bs, on the contrary, are close to each other (5.7 
and 3.5 ug 100 mt per g kg respectively) and only somewhat 
lower than the soil lead Rs. 

7.7. Summary of results from urban studies 

Table 7.2 contains a summary of the findings from eight different 
urban studies. The references are at the foot of the Table. 
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Table 7.2 Summary of findings from urban studies 

Study No. aestiinate 	estimate 	Remarks 
(I) 	(II) 	(III) 

12 -3.4 15.5 (s) Children 1-5 years; 
12.8 (hd) Unexplained negative a 

result of unadjusted 
analysis 

2.6. 10.6 (s) 6-18 years; unadjusted 
12.6 (hd) 

1.0 10.5 (s) 1-18 years combined; 
10.8 (hd) unadjusted 

1.92 6.8 (s) 1-18 years; linear 
7.2 (hd) model; adjusted for other 

exposure variables 
4-7 1-18 years; unadjusted 

13 2.0 0-10 years; unadjusted 

14 2.9 0-6 years; adjusted 
for age and race 

15 5.8 (Id) 4-6 years; adjusted 
61.2 (hd) for tap water lead and 
11.3 (s) other coritounders; hd 

expressed as ig m 	2  

16 1.8 1-16 years; boys; 
unadjusted 

0.9 1-16 years, girls; 
unadjusted 

17 - no association between PbB 
and air lead 

18 >10 4-18 years; unadjusted; 
time lag not taken into 
account 

19 6.5 2-14 years, unadjusted 

39 



(I) 	Study No.12. Angle and Mclntire (1979), Angle, Mclntire and 
Colucci (1974, 1984); 13. Berode et al. (1980); 14. Billick et al. 
(1979, 1980), Billick (1983); 15. Brunekreef et al. (1983), 
Brunekreef (1985); 16. Johnson et al. (1975, 1976); 17. Johnson 
et al. (1978); 18. Okubo et al. (1978, 1983); 19. Rosmanith et 
al. (1977a, 1977b). 

(Ji) and (Ill) cf. Table 7.1 

The available information from city environments is even more 
scant than from smelter areas. Air lead determinations in these 
studies were more restricted than in the smelter studies with only 
one or a few sites, or were practically useless due to selection of 
sampling location and period (study 16). Estimates of 3 for soil and 
house dust could be obtained from study 12. Although these 
estimates are reasonably in line with those from the smelter studies, 
the instability of the a and 3 estimates from this study and the 
remarkable difference between the regression analysis results and the 
group comparisons render the size of the estimates unreliable. The B 
estimate for soil from study 15 is also in line with the results from 
the majority of smelter studies. The range of a values from urban 
studies would be about 2 to 6.5 if the more obvious outliers are 
excluded. This range is somewhat larger than the range obtained 
from smelter studies, and probably reflects the paucity of exposure 
information in urban studies. 

7.8. Summary of results from other studies 

Table 7.3 contains a summary of the findings from the other studies. 
References are at the foot of the Table. 

The results of these studies indicate a B for soil lead between 0.6 
and 10.2 ig 100 mQ' per g kg'. The low 0.6 value is evidently out 
of line with the other values which range from 3.9 to 10.2 and which 
are only slightly lower than those reported in Tables 7.1 and 7.2. 

For house dust lead, the B estimates in Table 7.3 range from 4.0 
to 19.8. This is in line with the results in Tables 7.1 and 7.2. Only in 
one study (No.23) was house dust lead reported as ig m 2  instead of 
mg kg-  '. The results of this study are lower than those of study 
No.15 (61.2 4g 100 rnt' per ig m 2 ). 

7.9. Discussion of pathway impact estimates 

It must be stressed that none of the 26 reviewed studies had as its 
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Table 7.3 Summary of findings from other studies 

Study No. 
() 

-estirnate 
(11) 

Remarks 

20 8.6-19.8 (hd) 1-6 years; children of 
lead workers 

21 0.6 (s) 2-3 years children from 
4.0 (hd) high soil lead area (mining) 

compared with controls; 
faecal lead suggested little 
ingestion of dust and soil 

22 4.9 (s) Black pre-school children; 
soil lead related to paint 
lead and traffic density; 
unadjusted estimate 

23 8.1 	(s) 1-3 years children; soil 
38.0 (hd) and house dust contaminated 

by paint lead; house dust 
expressed as mg m 2  

24 3.9 (s) 1-5 years children; soils 
contaminated by paint lead 

25 11.0 (hd) 0-6 years children living 
10.2 (s) in homes with high lead paint 

levels 

26 6.8 (hd) Pre-school age children of 
lead workers 

(1) 	Study No.23. 3aker et al. (1977); 21. Barltrop et al. (1974, 
1975), 3arltrop (1975); 22. Galke, Hammer, Keil and Lawrence 
(1975); 23. Reeves et al. (1982); 24. Shellshear, Jordan, Hogan 
and Shannon (1975); 25. Stark et al. (1982b); 26. Watson, 
Witherell and Giguere (1978). 

(11) 	For units Cf. Table 7.1 

41 



primary goal to establish quantitatively the relationship between 
environmental lead and blood lead in children. As a consequence, 
most studies do not permit straightforward calculation of ci  and B 
values, which are properly adjusted for the relevant confounders. 

In the preceding sections, the central tendency of the ci and B 
values has been noted rather than any attempt to separate acceptable 
from unacceptable studies. The Criteria to do so must necessarily 
remain arbitrary to a certain extent, if only because published study 
results often do not 2ermit clear cut application of even well-defined 
criteria. If a descrirnination is to be made, miniumum criteria are 
proposed - 

environmental lead and blood lead measured at the same time 
and place; for soil and house dust, sampling at individual homes; 
venous blood samples, with reference to a quality control 
program me. 

01 the 11 industrial studies, this would leave the studies 1, 3, 5 
and S with civalues of 1.7 (measured at high level of exposure) and 
3.3-5.3 ig 100 mt 1  per ig rn -3  for lower levels of exposure, a 
playground dust S of 3.5 ig 100 mt per g kg - I and a soil lead B of 
12.6 tg 100 mt' per g kg -  i. Of the urban studies, 14 and 15 would 
remain with an ci value of 2.9 and B values of 5.8 (lead deposition 
g 100 per ig m 2 d), 61.2 (house dust ig  100 m2 per 

g kg ') respectively. No other studies fulfilled even these relatively 
lenient criteria. 

When the requirement of reference to a quality control 
programme for the blood lead analysis is omitted, studies 4, 10, 11, 
21 and 22 would become acceptable too. This would add ci values of 
2.4-3.7 and 12.5-17.6 (from the study by Wagner et al. (1981), and B 
values of 0.6 (from l3arltrop's study) and 4.9-1 1.7 for soil and 0.8 and 
4.0 for house dust. 

Application of these criteria evidently does not change the 
general picture, which puts inost ci values between 3 and 5 ig 
100 m9 per ig m°, with some clear outliers on both sides of this 
range, and which puts B for soil lead between 5.0 and 10.0 ig 100 
mt - ' pergkg. 

For adults, who do not generally ingest dust or soil particles, 
experimental studies have sufficiently demonstrated that ci is about 
1-2 ig  100 mt per ig m 3  (Azar, Snee and Habibi 1975; Griffin et 
al. 1975; Chamberlain et al. 1978; Gross 1981). Earlier reviews have 
suggested that ci may be somewhat larger in children than in adults 
(Hammond et al. 1981; Ratcliffe 1981; Snee 1981; Chamberlain 
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1983a; Jones and Stephens 1983) and the present review suggests that 
the difference may be as muCh as two- to threefold. It must je 
stressed that probably the major part of this difference is caused by 
the fact that in the case of children, additional pathways such as 
dust and soil are much more important than in the case of adults. 
The a values consequently represent total lead intake from the 
environment rather than via inhalation alone, as no adjustment was 
made for other environmental pathways. 

For soil lead, the unadjusted 6 values range from 0.6 to 15.5 'g 
100 rnf per g  kg 1 . The 0.6 value is evidently an outlier, as the 
remaining values are all between 3.9 and 15.5. The 0.6 value 
(Baritrop et al. 1974; Barltrop 1975) comes from the only study area 
where soils were polluted by historical mining activities, whereas in 
all other cases contamination of the soil surface was actuallly going 
on or had only been stopped or reduced shortly before the study. It 
may be that the surface soil particles which were actually available 
for intake had a different lead content, compared with the lead 
content in the sample actually taken in the l3arltrop study. This 
seems to be supported by the observation that the 6 for house dust 
was much less out of line with the results from other studies. 

Studies performed in areas where soils were predominantly 
contaminated by paint gave 6 estimates for soil between 3.9 and 8.1 
whereas studies near industrial sources in urban areas gave 6 
estimates for soil between 4.8 and 15.5. It may be that in the latter 
two types of studies, other pathways, such as air, which were more or 
less absent in the 'paint' studies were of influence in the 6 estimates. 

For house dust lead, 6 values ranged from 0.8 to 19.8 ig 
100 mi' per g kç' . The 0.8 value is an outlier, as the rest of the 
values were between 4.0 and 19.8. The 4.0 value was from the 
Baritrop et al. (1974) study which also gave a low 6 for soil lead, and 
in which, judging frorn the faecal lead data that were reported, 
children with a low intake of dust and soil were studied. The next 
lowest value was 6.8. 

Excluding some outlying values, the . values for soil and house 
dust lead are generally within a range of 3-4 frorn each other. All 
differences between groups in age, race, mouthing, exposure through 
other pathways, sampling and analysis methods, etc. evidently were 
not able to push the 6 estimates further apart. The few 6 values 
derived for street and playground dust are also within the general 
range for soil and house dust lead. 

For soil lead, 6 values clearly above 10.0 come from the Omaha 
study (No. 12) (lack of adjustment for race probably inflated this 
estimate); from the Arohem study (No. 3), in which the overall level 
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of exposure was low; from the Trail study, but only when Trail was 
compared with a control town (within Trail, S values were lower) and 
from the El Paso study (No. 4) in which the 3 values were estimated 
from a reduction of PbB and lead in soil over time which was 
probably not yet completed. Nine other S estimates from seven 
different studies were all in the 3.9-10.2 range. 

For house dust lead, S values above 13.0 again come from the 
Omaha study (No. 12); from one of the studies of lead workers' 
children (No. 20) in which, however, only a few children v.ere studied 
and from which 13 values had to be estimated from exposure 
categories rather than averages; and from one of the paint studies 
(No. 26). Generally, the 5.0-10.0 range is where most of the . values 
for lead in soil, house dust, street dust and playground dust can be 
found. 

Earlier reviews by Duggan (1980, 1983b) have suggested that a 
reasonable mid-point for 13 might be 5.0. These reviews, however, 
have relied more heavily on studies in which one or more of the other 
pathways was excluded, and in some cases adjusted rather than 
unadjusted S values were calculated. 

As mentioned earlier, the size of the ci values was more or less 
unrelated to age, blood lead level and type of blood sampling. For 
the 13 estimates, the presented evidence suggests the same. This is 
not to imply that the blood lead/lead exposure relationship is 
independent of age, that curvilinearity does not exist and/or that 
type of blood sampling is irrelevant to blood lead level; it merely 
indicates that within the scatter of values found, the influence of 
age, blood lead level and method of blood sampling cannot be 
detected. 

8. The scientific basis of standards for 
environmental lead 

Froiii the previous sections it will be clear that it is not easy to give 
an exact, quantitative picture of the impact of environmental lead 
pollution on children's blood lead. It is equally clear that public 
health authorities would like to have such a picture to lerive 
standards for lead in air, soil, dust or other environmental media. 
The ambient air quality standard for lead as adopted in the U.S.A. 
(EPA 1978) can be used to illustrate the complications involved. 
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The 1978 standard uses an a estimate of 2, which is meinly based 
on the Silver Valley lead study (Yankel et al. 1977), and is derived 
after adjustment for soil lead. This, in fact, means that a standard 
was adopted which underestimates the effect on childrens blood lead 
when the concentration of lead in air is changed, as this will 
ultimately change the concentration of lead in other media as well, 
which is assurned not to happen by the adjustment procedure (of. 
Section 7.3). 

The standard is currently under review; drafts of the Criteria 
Document issued in 1983 have emphasized three studies - the Silver 
Valley lead study (Yankel et al. 1977), the Omaha study (Angle and 
Mclntire 1979) and the Belgian smelter study (Roels et al. 1980). In 
the drafts, secondary analyses of the data from these studies were 
presented in which the blood lead/air lead relationship was adjusted 
for soil lead and/or hand lead; the resulting a was now correctly 
interpreted as representing an inhalation slope; again, the 
impossibility of manipulating air lead without affecting lead in soil, 
dust, etc. was not adequately discussed, although it was correctly 
remarked that once soil and dust are polluted, other methods of 
control might be necessary apart from reducing lead in the air 
(Charney, Kessler, Farfel and Jackson 1983; Marcus 1984). If this 
remark can be interpreted to mean that keeping soil lead and dust 
lead not only statistically but factually constant is considered 
possible in areas where air lead is allowed to increase up to the 
standard, the adjusted relationship can indeed be used to predict the 
resulting blood lead rise. It is obvious, however, that this would be a 
somewhat impractical procedure. 

An update of the review draft issued in September 1984 (EPA 
1984) suggests that it may be better to adopt an aggregate approach, 
which would emphasize air lead as an indicator of general 
multi-media environmental pollution. If this approach were 
accepted, a would have to be approximately doubled. At present, it is 
not yet clear which approach EPA will adopt when it finally publishes 
its new air lead standard. In the new draft, a 6 for soil and house dust 
of 2.0 tig 100 m' per g kg - ' is suggested, which is rather lower 
than the 5.0-10.0 range mentioned in the previous chapter. The 
review draft mixes adjusted and unadjusted values, however, and 
uses an adjusted value from the Stark et al. (1982b) study as an 
'acceptable' mid-point value. As mentioned earlier, unadjusted 6 
values from the same study are of the order of 10.0 'g 100 mQ per 
g kg '. 

The scatter in the a values as well as the 6 values further stresses 
the importance of using safety factors. One single mid-point value is 
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evidently not sufficient to protect specific population groups which 
may differ in important ways from the average. In other areas of the 
environmental health field, it is more or less common practice to use 
safety factors of 2 or more when using epidemiological data, applied 
to the lowest exposure level where effect has been demonstrated (or 
to the highest where it has not), to derive a standard (WHO 1977b, 
1978. It is quite remarkable that such a line of reasoning has seldom 
been applied to the environmental exposure impact estimate of lead. 
It is evident that a safety factor of 2, applied, for example, to the 
90-percentile of the a or estimates alone would be sufficient to 
arrive at standards which are at least four times lower than the one 
currently in use in the U.S.A. This is even more important when it is 
realized that in establishing currently accepted safe levels of lead in 
blood, safety factors were only marginally used or not used at all (of. 
Chapter 1). 

On the basis of the observation that the current level of 
exposure to lead is quite close to the level where adverse health 
effects have been demonstrated in man and in animal experiments, 
Rostron (1982b) has remarked that if it were decided now to which 
levels lead could be introduced in our environment, these levels would 
preferably be lower than the ones currently encountered. Further 
stress is given to this point in observing that safety factors were not 
applied to the a estimates used in most existing standards for air lead. 

9. Concluding remarks 

Despite the great research effort which has been devoted to the 
environmental health aspects of lead in the past, it is still difficult to 
give an exact description of the relationship between environmental 
lead and blood lead in children. This is partly due to the differences 
in circumstances in which different child populations grow up. There 
is no unique relationship between concentrations of lead in the 
environment and lead in children's blood. Depending on local 
circumstances like accessibility of environmental media, play habits 
and the nutritional status of the involved populations, the blood lead 
levels of children are more or less affected by a given level of lead in 
the environment. 

Also, there has been no standardization of the methods used for 
investigating the exposure of children to lead in the environment. In 
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addition, there are several key topics which have not been 
investigated in detail. These include the relationship between total 
lead intake and blood lead in children, and the amounts of dust and 
dirt which are ingested during normal play. Quantitative estimates 
of relationships between environmental lead and blood lead in 
children - including the ones given in this report - therefore need to 
be interpreted with care. 

It is not yet possible to predict blood lead levels in children 
precisely from their exposure to lead in the environment. As a 
consequence, it remains necessary to measure blood lead if an 
adequate assessment of health risks is sought in any situation in 
which environmental lead concentrations are elevated. 

The uncertainty which surrounds the estimates of the impact of 
environmental lead exposure on children's blood lead emphasizes the 
need to use a margin of safety when establishing environmental 
quality standards for lead. In the interests of public health it seems 
prudent to reduce or eliminate lead in gasoline rather than trying to 
establish detailed quality standards for the concentration of lead in 
different environmental media. 
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APPENDIX I 

Variability of exposure measurements and its effects 
on regression analyses in epidemiology 

A common assumption in regression analysis is that the X or 
independent variable is measured without error. In environmental 
epidemiology, however, it is usually not possible to do so. In 
measuring exposure to environmental agents, a sometimes large 
variability in time and space may be encountered which makes it 
difficult to define exactly the exposure level of each individual of a 
study population. If, for example, we define the relevant house dust 
lead exposure of an individual child as the average amount of lead on 
the floor of the living room, over the months prior to blood sampling, 
it will be clear that one sample from one spot at one point in time 
within that month yields an estimate of the relevant exposure, the 
reliability of which depends on the variability of the amount of lead 
on living room floors in time and space. 

It is well known that a random error in the X or independent 
variable leads to a biased estimate of the regression coefficient of 
the Y or dependent variable on X (Cochran 1968; Draper and Smith 
1981). In the bivariate case, the bias is consistently towards zero, 
and one of the methods to estimate the size of the bias is to obtain 
estimates of the error variance and the true variance of the X 
variable. These estimates can be obtained from an analysis of 
variance; an analysis of variance can be performed when there has 
been some repetition of the exposure measurements in time and/or 
space. A correction of the observed regression coefficient of Y on X 
may then be defined as b = B (1 +A)',with 

b 	 = observed regression coefficient 
B 	 = 'true' regression coefficient 
A 

= error variance 
= true variance 

From an analysis of variance, estimates of the error variance 
and true variance can be obtained as the within-subjects variance and 
the between-subjects variance, respectively. From a standard 
analysis of variance table, these can be obtained from the 
within-subjects Mean Square and the between-subjects Mean Square 
(Snedecor and Cochran 1967). 
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Suares 	Degs of freedom 	Mean_uare 

Between subjects 	 n-I 	 SSb/fl-I 
Within subjects 	 k 	 SS/k 

Total 	 ii + k-I 	 SSt/n+k_I 

ri is the number of subjects; n-i-k is the total number of 
observations, which is equal to rlq in which q is the number of 
repetitions of the exposure measurements. 

SSw/k is an estimate of the error variance; 
SSb/n-1 is an estimate of the (error variance + q true variance). 

We may now define X as a reliability coefficient. If it is zero, 
there is no error variance, and the regression coefficient of Y on X is 
not biased. If it deviates much from zero (because c is large 
compared to o) the bias in the regression coefficient becomes large. 

The SPSS programme Reliability (Parallel option) can be used to 
obtain the required analysis of variance table. The programme has 
the property that it estimates the error variance and true variance 
after adjustment for systematic differences between measurements 
due to time sequence effects, etc. The analysis of variance table 
which is produced also permits calculation of unadjusted components 
of variance. The programme also produces a reliability coefficient 
defined as 

(J./O t2,for the sum of the repeated rrieasurernerits. 

The variance of the sum of q measurements is equal to q 2 times 
the variance of the mean of these q measurements. This is also true 
for the components of variance o and a t  so that a./a t  for the sum 
is equal to 0e / Ut for the mean. The latter reliability coefficient can 
thus be used to establish how much better the exposure was 
estimated by the mean of q measurements than by one single 
measurement, by comparing this reliability coefficient to the one 
based on single measurements. In multivariate regression analysis, 
the simple correction formula for obtaining the 'true' regression 
coefficient no longer holds (Cochran 1968). The calculations become 
complicated, and, depending on the size of the error in the different 
independent variables, the bias in the regression coefficients may be 
away from as well as toward zero. 
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