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In the first decade of the 20th century, two German chemists – Fritz Haber and         

Carl Bosch – developed a way to produce synthetic nitrogen cheaply and on a large 

scale. Their invention spurred the mass production of nitrogen-based fertilizers, and 

thus transformed farming around the globe. It also marked the beginning of our 

long-term interference with the Earth’s nitrogen balance. Every year, an estimated 

US$200 billion worth of reactive nitrogen is now lost into the environment, where it 

degrades our soils, pollutes our air and triggers the spread of “dead zones” and toxic 

algal blooms in our waterways.

It’s no wonder that many scientists are arguing that “the Anthropocene” should 

become the official name of the current geological era. In just a few decades, 

humankind has caused global temperatures to rise 170 times faster than the natural 

rate. We have also deliberately modified more than 75 per cent of the planet’s land 

surface, and permanently altered the flow of more than 93 per cent of the world’s 

rivers. We are not only causing drastic changes to the biosphere, we are also now capable of rewriting – and even creating from 

scratch – the very building blocks of life. 

Every year a network of scientists, experts and institutions across the world work with UN Environment to identify and 

analyze emerging issues that will have profound effects on our society, economy and environment. Some of these issues are 

linked to new technologies that have astonishing applications and uncertain risks, while others are perennial issues, such as 

the fragmentation of wild landscapes and the thawing of long-frozen soil. Another issue, nitrogen pollution, represents an 

unintended consequence of decades of human activity in the biosphere. While the final issue analyzed here, maladaptation to 

climate change, highlights our failure to adequately and appropriately adjust to the shifting world around us.

There is some good news to report. As you can read in the pages that follow, a holistic approach to the global challenge of 

nitrogen management is beginning to emerge. In China, India and the European Union, we are seeing promising new efforts to 

reduce losses and improve the efficiency of nitrogen fertilizers. Ultimately, the recovery and recycling of nitrogen, as well as other 

valuable nutrients and materials, can help us to farm cleanly and sustainably, a hallmark of a truly circular economy. 

The issues examined in Frontiers should serve as a reminder that, whenever we interfere with nature – whether at the global scale 

or the molecular level – we risk creating long-lasting impacts on our planetary home. But by acting with foresight and by working 

together, we can stay ahead of these issues and craft solutions that will serve us all, for generations to come.

Joyce Msuya

Acting Executive Director 

United Nations Environment Programme

Foreword
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PERMAFROST PEATLANDS: LOSING GROUND IN A WARMING WORLD

Permafrost Peatlands:
Losing ground in a warming world

temperatures for at least two consecutive years. Arctic 
and subarctic peatlands exist within the permafrost zones 
of Canada, Denmark/Greenland, Finland, Norway, Russia, 
Sweden and the United States. Permafrost peatlands with a 
peat layer thicker than 40 centimetres span over 1.4 million 
square kilometres, and an even larger area has shallower 
peat.3,6-8 Extensive permafrost peat deposits can also be found 
far outside the Arctic and subarctic regions, for instance 
in Mongolia and on the Qinghai-Tibetan plateau, where 
mountain ranges prevent warm oceanic air from moving 
inland, and winter temperatures are very low.9,10 

Permafrost peatlands are undergoing rapid changes. The 
Arctic is now warming twice as fast as the global average.11 
In recent decades, the southern permafrost boundaries have 
receded northwards by 30 to 80 km, a significant loss in 

Permafrost peatlands with numerous lake depressions, Cape Bolvansky, Russia

Photo credit: Hans Joosten

Accelerating change in the Arctic

Peatlands located in the tropics receive much attention as 
global hotspots for their critical role in carbon storage and 
climate change mitigation. They store nearly 120 gigatons of 
peat carbon, but this is only about 20 per cent of all carbon 
locked away in global peatlands.1 The largest volumes are 
stored in the northernmost areas of our planet, with the 
northern circumpolar region holding almost half of the world’s 
soil organic carbon, largely in the form of permanently frozen 
peat.2-5 

Much of the ground in the northern hemisphere freezes 
and thaws seasonally, and some stays frozen all year round. 
Underneath roughly 23 million square kilometres of the 
north lies permafrost – ground that remains at sub-zero 
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coverage.12-15 The risks associated with permafrost degradation 
are that the mobilization and microbial decomposition 
of previously buried, frozen organic matter could lead to 
the release of significant amounts of carbon dioxide and 
methane, which could, in turn, strongly reinforce global 
warming.16-19 Widespread permafrost degradation would also 
have enormous direct impacts on the regions’ ecosystems, 
hydrology and infrastructure. 

Although permafrost has been intensively studied for over 
a century, more research on its distribution, characteristics 
and dynamics is critically needed to better understand how it 
responds to climate change and human disturbance.20 In the 
case of peatlands with permafrost, knowledge is even more 
incomplete. The way in which permafrost peatlands respond 
to a warming climate and their collective role in global climate 

change are neither clearly understood nor straightforward, 
as the interaction of permafrost, ecosystems and climate is 
extremely complex.20-22 For example, although frozen (dry) 
and thawed (wet) peatland sites may have similar carbon-
sequestration rates and act as a carbon sink, they usually have 
totally different greenhouse-gas flux characteristics and may 
act as a net source of emissions.23-25 Moreover, frozen and 
thawed peatland sites could also rapidly alternate over time 
and space.23,26

Permafrost thaw is seen as one of the most important “tipping 
elements” that could precipitate a runaway greenhouse 
effect, or an uncontrollable “Hothouse Earth”.27 To avoid such 
a destructive scenario, it is critical that the world’s permafrost 
and its peatlands stay frozen and retain their carbon deposits. 

Peatlands and permafrost: the role of peat, plants and water

Unfrozen ground

A moss layer 
has similar 

properties to peat 
and may cool the 

underlying soil 
considerably

 
Peat keeps

the underlying 
permafrost effectively 

insulated from
temperature variations 

that could induce 
a thaw

Peatlands are characterized by a thick layer of dead plant remains, or peat. The water-saturated, oxygen-free and 
permafrost conditions prevent peat from full decay and allow it to accumulate over thousands of years. The thermal 
conductivity of peat is very low when dry, but 5 times higher when wet, and 25 times higher when frozen. The intricate 
relationships between peat, vegetation, water and ice maintain the delicate balance of permafrost peatlands.

The 
removal of 

shrubs leads to
more solar heat

input, permafrost
collapse and wetter 

conditions

Open water 
accumulates
summer heat 
and acts as a 
heat source in 
winter, affecting 
the distribution 
of permafrost

Cold ice expands by 
attracting and freezing 
nearby water, leading 
to drier conditions, 
changes in vegetation 
and the formation of 
ice-rich peat mounds 
or palsas

Trees, shrubs and lichens, which 
grow better in warmer and drier 
conditions, can also create colder 
soil conditions: trees and shrubs 
absorb incoming light and heat, 
whereas light-coloured lichens 
reflect sunlight

Discontinuous permafrost

Continuous permafrost

In summer, dry peat obstructs heat inflow, but 
when wet and frozen, its properties facilitate 
the penetration of winter cold into the soil.  

This resulting cold pump creates and 
conserves permafrost under conditions in 
which it otherwise could not exist.

Peat

Lake

Palsa Palsa

Without flowing 
water, permafrost 

degrades very slowly
and may persist at

depth for long periods
even after superficial 

disturbance

Vegetation 
is important
for the heat
balance of

the soil
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Thawing permafrost, decaying peat and 
complex interplays

Each year of the past decade has been warmer in the Arctic 
than the warmest year of the 20th century.15 Globally, 
permafrost temperatures have continued to rise in recent 
decades. The greatest increments in annual mean permafrost 
temperatures have been observed in the coldest parts of the 
Arctic, whereas the increases have been much less in “warmer” 
permafrost and in discontinuous permafrost zones. In some 
locations, permafrost temperatures have dropped marginally 
because of recent cold winters.15,28 

As temperatures rise, the thawing of ice-rich permafrost or 
the melting of ground ice leads to distinctive depressions in 
the landscape, known as thermokarst. Over the past decades, 
thermokarst formation in peatlands seems to have accelerated 
in the discontinuous permafrost zones.29-31 However, across the 
Arctic, long-term observations do not suggest uniform trends 
in thermokarst development attributable to global warming.15  

When formerly frozen soil collapses due to a thaw, the 
subsidence allows the formation of small, new bodies of water 
that can later evolve into lakes. The formation of thermokarst 
lakes, in turn, accelerates permafrost thaw even faster and 
deeper.19 The spread of these lakes, on the other hand, could 

also increase the connectivity of drainage networks, supporting 
lake drainage, vegetation regrowth, peat formation and the 
re-establishment of permafrost.32-37 These contrasting dynamics 
illustrate the greater need for a better understanding of 
potential impacts of the warming trend.

Climate change and elevated temperatures have dramatically 
increased the incidence of wildfires in the Arctic, with 
blazes spreading into tundra and forest–tundra boundary 
regions. Fuelled by underlying peat deposits, fires release 
vast amounts of carbon, destroy vegetation and insulating 
soil layers, and decrease ground albedo, or light reflectance, 
leading to increased sensitivity to climate change and 
widespread thermokarst development.38-44 Even under the 
most conservative scenarios, the combined impacts of warmer 
temperatures and wildfires are predicted to be especially 
severe in discontinuous permafrost zones, with climate 
conditions becoming unfavourable to permafrost altogether.31 

This could cause changes in the types of vegetation and its 
productivity, which could in turn result in larger and more 
frequent wildfires.45,46 

Another effect of increased warming due to climate change 
is that permafrost thaw could release significant amounts of 
methane, a potent greenhouse gas, into the environment. 
Although there is large variability in Arctic methane-emission 
estimates, current global climate projection models seem to 
suggest only slight increases in methane emissions from the 
northern permafrost region.47,48  However, most models do not 
include an adequate representation of thaw processes.8 

          Video: Permafrost – what is it?

Video link: https://www.youtube.com/watch?v=lxixy1u8GjY 

Photo: Freshly-drilled core sample of permafrost, Pokhodsk, Russia

Photo credit: Hans Joosten
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A recent modelling study assessed the long-term climatic 
consequences of permafrost degradation by considering 
the abrupt thaw processes relating to recently formed 
thermokarst lakes. The result suggested that within this 
century, carbon release in the form of methane (CH

4
) may 

C
C

C

C
C

Thermokarst

Thermokarst is a landscape feature that results from 
the melting of ground ice in regions with underlying 
permafrost, causing subsidence at the surface. Typical 
thermokarst formations include thermokarst lakes, 
sinkholes, pits and troughs in polygonal terrain.56,57 
Thermokarst is widespread in discontinuous permafrost 
zones.58,59 It is also frequently found in the much colder 
zones of continuous permafrost, where ice wedges cause 
permafrost instability.60,61

Water accumulating due to thermokarst initially enhances 
heat gain and degradation in a positive feedback. 
Conversely, vegetation growth and the accumulation 
of organic matter gradually limits further downward 
thawing. Because of new and rapid peat accumulation 
in thermokarst depressions, the thawing of permafrost 
does not necessarily convert the peatland into a carbon 
source.22,23,62 However, wet soil conditions will likely cause 
the release of methane.

account for a small fraction of total carbon release from newly 
thawed permafrost, yet it could cause up to 40 per cent of 
the additional warming effect attributable to newly thawed 
permafrost.49 

Climate change is only one of many factors directly 
influencing the changes in permafrost peatlands. Any 
disturbance to the surface soil can lead to permafrost 
degradation, including natural processes such as forest 
or tundra fires, and anthropogenic disturbances, such 
as industrial and urban infrastructure development and 
construction activity, mining, tourism, and agriculture.50,51 
These many forms of development in permafrost peatlands 
often disregard the unique features of the areas, causing 
landscape fragmentation and disruption of the water 
cycle.14,52 In Russia, 15 per cent of the tundra territory has 
been destroyed by transport activities, resulting in permafrost 
thawing, erosion, subsidence and thermokarst development.53 
About 45 per cent of the oil and natural gas production fields 
in the Russian Arctic are located in the most ecologically 
sensitive areas, often in peatlands, including the Pechora 
region, Polar Urals and north-west and central Siberia.54,55 The 
rising demand for natural resources and increased accessibility 
to frozen regions due to warmer conditions may in the future 
result in more industrial and infrastructural activity, escalating 
disturbance to peatlands and permafrost. The resulting 
changes will also impact indigenous peoples who have 
traditionally depended on the use of land such as peatlands 
for food, reindeer, game, and fish.14

Thawing and collapse of permafrost in Mongolia

Photo credit: Hans Joosten

Photo credit: Hans Joosten
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Peatlands

Permafrost

Isolated

Sporadic

> 50% cover

20-50% cover

Discontinuous

Continuous

Geospatial data sources:

Peatlands data provided by Greifswald Mire Centre, Greifswald, Germany

Permafrost data provided by Alfred Wegener Institute, Helmholtz Center

for Polar and Marine Research (AWI), Bremerhaven, Germany
90

Distribution of

Permafrost 

Peatlands

Underneath
25% of 

the northern
hemisphere lies

permafrost

Permafrost
is degrading.  The 

southern boundaries 
have retreated 
northward by 

30-80 km in recent 
decades 

Peatlands span vast areas in the permafrost zones. 
At least 1.4 million km2 of permafrost peatlands 
have a peat layer thicker than 40 cm, and 
a much larger area has shallower peat.  

Permafrost peat deposits are also 
found in Mongolia and on 
the Qinghai-Tibetan Plateau
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Peatlands are areas with 
a layer of dead plant materials 
(peat) at the surface.  The 
water-saturated and oxygen-free 
conditions prevent peat from 
fully decomposing.

Peatlands 
are the 

largest long-
term stores of 

organic carbon
of all terrestrial

ecosystems

Arctic warming 
has increased fire 

activity in tundra and 
forest–tundra regions 

causing significant 
reductions in
 soil carbon 

In 
the absence 

of moving surface 
or groundwater, 

permafrost degrades 
very slowly and can 
persist at depth for 

a long time   
Circumpolar soils 
hold 50% of the 

world’s soil carbon,
and this carbon is largely 

stored in peatlands 
and often conserved 

as permafrost  

The combined 
impact of climate 

warming and
wildfire is more 

severe in the zone of 
discontinuous 

permafrost 

Thermokarst 
is a distinctive 

depression in the 
landscape as a 

result of permafrost
 thaw or melting 

of ground ice

Permafrost
thaw could release 

significant amounts
of mercury into
the environment 

Climate 
models

suggest 35% 
near-surface 
permafrost 

loss by
2050

Thermokarst 
is widespread in 

the zone of 
discontinuous 

permafrost

Arctic 
temperatures 

are rising twice as 
fast as global 

average 

Soil organic carbon may be lost 
in different forms: as gases – CO

2
 

or CH
4
 – emitted back  into the 

atmosphere, or as dissolved organic 
carbon or particulate organic 
carbon transported into rivers  

Deeper water bodies accumulate 
heat in summer and become a heat 
source in winter, influencing the 
local distribution of permafrost

Experts expect 
the permafrost 

regions to become 
a carbon source 

by 2100

Fire removes insulating 
vegetation, peat and soil 
layers, making peatland more 
vulnerable to climate change

Shrubs, trees 
and lichens can keep 

soil cooler by absorbing or 
reflecting sunlight.

Removal of the protective 
vegetation can cause 
rapid degradation of

permafrost.

Permafrost soils including peat 
deposits contain twice as much 
mercury as the amounts found
in the rest of global soils, the 
atmosphere, and oceans combined    

When peat is no 
longer frozen as a 

result of permafrost thaw, 
microbial decomposers 

become active and 
breakdown organic 
materials, causing 

emissions of 
CO

2
 and CH

4
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Growing awareness of permafrost peatlands 

For more than a century and increasingly over the last 
decades, permafrost regions have been the subject of 
research and technology development to address their 
distinctive scientific and engineering challenges. Despite 
the efforts of the International Permafrost Association and 
the Global Terrestrial Network for Permafrost, large gaps in 
region- and habitat-specific knowledge remain, not least due 
to extreme climatic conditions, limited accessibility and a 
complex geopolitical setting. A recent review indicated that 
30 per cent of all citations in scientific literature related to field 
experiments in the Arctic are primarily derived from the direct 
surroundings of just two research stations: Toolik Lake in 
Alaska, USA and Abisko in Sweden.63 This could bias scientific 
consensus and lead to inaccurate predictions of the impacts of 
climate change in the Arctic. 

With the growing awareness of climate change and Arctic ice 
melt, recent assessments are increasingly trying to encompass 
aspects such as social-ecological change, regime shifts, and 
the role of human action in adaptation and transformation.64.65 

Large-scale research projects are being developed to address 
the implications of permafrost thaw and degradation. These 
include the Arctic Development and Adaptation to Permafrost 
in Transition (ADAPT) initiative, which collaborates with 15 
laboratories across Canada and other groups of researchers 
to develop an integrated Earth systems science framework in 
the Canadian Arctic. Dedicated laws such as Ontario’s 2010 
Far North Act are combining with new planning initiatives 
to open up and protect the Far North through a land-use 
planning process in consultation with First Nations.66 

The Arctic Council is an example of strong international 
cooperation that has been especially instrumental in 

1949 1979 2010 20131972

Progression of thermokarst development due to permafrost thaw between 1949 and 2013 in a study site located in Prudhoe Bay, Alaska, United States. 

The white line is the Spine Road constructed in 1969. 
52Source: Walker et al. (2014) 
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generating and increasing knowledge for national and 
international policymaking, such as with its 2017 report on 
snow, water, ice and permafrost in the Arctic.15,67 While it 
is recognized that Arctic states play a key role as stewards 
of the region, efforts by other actors in the protection and 
awareness of permafrost peatlands are also needed. A number 
of international organizations, such as the Intergovernmental 
Panel on Climate Change – through its IPCC Special Report on 
the Ocean and Cryosphere in a Changing Climate, the World 
Meteorological Organization, and the International Science 
Council through the International Arctic Science Committee, 
have become increasingly engaged, helping to raise 
awareness and understanding of the implications of changes 
in the Arctic.

C
C

C

C
C

Ontario’s Far North Act and the role of First Nations in protecting permafrost peatlands

Between 50-57 °N and 79-94 °W lies the Far North of Ontario, Canada – a dynamic landscape hosting arctic, boreal, and 
temperate biomes. Here, peatlands dominate the landscape, covering 47 per cent or 21 million hectares of the Far North 
area, and storing about 36 gigatons of carbon as peat.68 This is equivalent to a quarter of the carbon stored in all of Canada’s 
peatlands. 

Assented to in October 2010, Ontario’s Far North Act recognizes the significant role of the Far North in carbon storage and 
sequestration capacity, and provides for community-based land-use planning as a strategy to fight climate change.66,69 The 
Act centres around the significant role of First Nations – aboriginal peoples in Canada who are not Métis or Inuit – in land-use 
planning that includes cultural, social, ecological and economic considerations. 

As required by the Act, the Far North land use strategy sets out to help prepare community-based land-use plans while 
integrating issues beyond the scope of individual planning areas, such as indigenous knowledge. Four objectives outlined in 

the strategy include: 
1. A significant role for First Nations in planning.
2. The protection of ecological systems and areas of cultural value in the Far North by including at least 225,000 km2 of the 

region in an interconnected network of protected areas designated in community-based land-use plans.
3. The maintenance of biological diversity, ecological processes and functions, including the storage and sequestration of 

carbon in the Far North.
4. Enabling sustainable economic development that benefits the First Nations.

The strategy was planned for completion by 2016, but the process is still ongoing, led by interested First Nations working with 
the Ontario Ministry of Natural Resources and Forestry. Some community-based land-use plans have been approved, some 
drafted, while others are underway and some have not yet started.70 Although progress is being made, uncertainty remains 
on how to achieve some of the Act’s objectives, including in areas of governance, and particularly in scientific knowledge. It is 
imperative to understand how climate change affects carbon sequestration and storage in the Far North peatlands, as well as 
the related ecological processes, in order to develop appropriate policy and management responses. 

Permafrost thaw has led to thermokarst formation in peatlands near 
Naryan-Mar, Nenets autonomous region, Russia

Photo credit: Hans Joosten
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Knowledge priorities and network expansion

There remains a great deal of uncertainty about how fast 
permafrost peatlands will change and what the impacts of 
those changes will be, both locally and globally. International 
cooperation is required to fund further research in the long 
term and devise workable strategies to reduce vulnerabilities. 
Nations need to collaborate on a range of implementable 
measures that acknowledge and apply traditional and local 
knowledge, facilitate engagement with stakeholders, and 
develop effective observation networks.15 At the same time, 
public outreach and education concerning the risks, likely 
impacts and potential adaptation options will be key to 
developing informed governance and policy. 

Although there is an existing network of observation stations 
providing information on general trends in permafrost 
change, the spatial distribution of sites is very uneven. In 
particular, there are large gaps in the network across the 
central Canadian and central Siberian Arctic, Greenland, 
Russian Far North-East, Tibetan Plateau and subarctic 
region.30,63  The timely assessment of the global status of 

permafrost requires the expansion of existing research 
networks to a more comprehensive monitoring network. 
This extended network would optimally be designed to be 
user-friendly for all stakeholders, from climate scientists to 
the general public, and would include the use of standardized 
measurements and easily accessible databases.15,64 Countries 
with extensive permafrost zones would benefit from 
preparing adaptation plans that assess the potential risks and 
include mitigation strategies for the damage and costs of 
permafrost degradation.64

Permafrost peatlands as carbon hotspots represent a special, 
highly diverse and dynamic environment that encompasses 
complex relationships between soil carbon, hydrology, 
permafrost, vegetation, and people. The major knowledge 
gaps lie in the limited understanding of how the processes 
interrelate and in the insufficiency of current studies and 
models. More research is required on the precise location of 
permafrost peatlands, how they are changing, and what their 
release potential is. Climate models need to include carbon 
emissions from the mobilization of permafrost carbon. To 
better characterize the response and feedback of permafrost 
peatlands to climate change, it will be critical to advance 
beyond single-disciplinary investigations. This will require 

Video: Restoring peatlands in Russia for fire            

prevention and climate change mitigation

Video link: https://www.youtube.com/watch?v=QZ5qu_nPHYM 

Photo: Fire in dwarf birch tundra in Komi Republic, Russia

      

© Wetlands International

Photo credit: Hans Joosten

Satellite image taken on 19 July 2016 showing dense smoke over 

permafrost peatlands of north-central Russia. Red demarcations indicate 

high surface temperatures likely caused by peat fires. 
Photo credit: NASA Earth Observatory/Jesse Allen and Joshua Stevens
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a move towards an integration of field observations and 
retrospective – or palaeoenvironmental – studies, remote 
sensing, and dynamic modelling.22,30 The physical complexity 
of permafrost peatlands and the significant potential risks of 
their degradation and disruption also demand a more holistic 
approach to land-use planning and management, requiring 
better integrated knowledge for planners and policymakers. 

The Arctic has already begun to change substantially. Even 
with the full implementation of the Paris Agreement under the 
United Nations Framework Convention on Climate Change, 
it is still likely that by the end of this century the Arctic 
environment would be quite different from that of today.15 The 
near inevitability of accelerating impacts reinforces the urgent 
need for local and regional adaptation strategies targeting 
these carbon-dense northern ecosystems. The prudent 
management of permafrost peatlands will be key to limiting 
greenhouse-gas emissions, reducing human and ecological 
vulnerabilities, and to building longer-term climate resilience.

Video: Peatlands – climate regulation 

and biodiversity

Video link: https://www.youtube.com/watch?v=ZcxZ9gvNfSU

Flat palsas in Komi Republic, Russia
© Naturstyrelsen

Photo credit: Hans Joosten

Palsa permafrost mire near Noyabrsk, Western Siberia, Russia 
Photo credit: Franziska Tanneberger
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