WORK GROUP 4

VEHICLE INVENTORY AND DEVELOPMENT OF A DATA ENTRY TOOL

TEAM COMPOSITION - WGP 4

Representatives of
-National Transport Authority (Team Leader)
-Ministry of Social Security \& Environment and Sustainable Development

- Ministry of Finance and Economic Development
-Ministry of Industry and Commerce and Consumer Protection
-Ministry of Public Infrastructure and Land Transport
-Mauritius Revenue Authority
-University of Mauritius (Faculty of Engineering)

Terms of Reference

Vehicle Inventory in Mauritius

- Carried out in two phases
- Terms of Reference Phase 1 - to set up a vehicle data inventory for the years 2005, 2008, 2010 and 2012 for newly registered light duty vehicle (LDV).
- to use the vehicle inventory to develop baseline estimates for 2005 as per GFEI methodology.

Terms of Reference

- Terms of Reference Phase II - to assess fuel consumption and CO_{2} emissions for both LDVs and Heavy duty Vehicles (HDVs) for the years 2014 and 2015.
- to develop a data entry tool for future vehicle imports
- to conduct a thorough review of existing regulations and incentives to promote cleaner and more efficient vehicles in Mauritius.
- to look into the modernization of public transport.
- Phase 1 completed August 2014

Phase II completed March 2017

Vehicle Registered in Mauritius 2000-2015

Types of vehicle	2000	2005	2010	2015
Cars and Dual purpose Vehicle DPV)	89,823	126,844	175,634	237,600
Auto/motorcycles	116,478	133,430	159,329	193,688
Heavymotorcar and bus	29,292	3,605	4,094	4,264
Van and Lorry	3,310	36,036	39,100	41,601
Other Vehicles	5,115	5,581	5,958	8,991
Total	244,018	305,496	384,115	486,144

LDVs Registered 2000-2015

Year	Petrol	Diesel	Hybrid	Electric	LPG	Total	Annual Growth Rate
$\mathbf{2 0 0 5}$	98,744	42,618	0	0	224	141,586	-
$\mathbf{2 0 0 6}$	106,382	45,309	0	0	227	151,918	7.3%
$\mathbf{2 0 0 7}$	114,536	48,108	0	0	230	162,874	7.2%
$\mathbf{2 0 0 8}$	124,813	51,095	0	0	232	176,140	8.1%
$\mathbf{2 0 0 9}$	133,807	53,486	43	0	238	187,574	6.5%
$\mathbf{2 0 1 0}$	142,910	56,014	161	0	244	199,329	6.3%
$\mathbf{2 0 1 1}$	151,842	58,463	315	2	246	210,868	5.8%
$\mathbf{2 0 1 2}$	163,125	61,096	703	5	247	225,176	6.8%
$\mathbf{2 0 1 3}$	175,938	63,446	1,389	6	251	241,030	7.0%
$\mathbf{2 0 1 4}$	198,153	66,552	1,824	8	252	266,789	10.7%
$\mathbf{2 0 1 5}$	220,954	68,747	2,422	19	253	292,385	9.6%

Overview of Fuel Consumption and Co_{2} Emissions (2015)

Final energy consumption by sector

CO_{2} emission by source category 2015

	Gg
Transport	1032.06
Energy industries (electricity)	2407.52
Manufacturing industries	337.78
Other sectors	198.2
Total	$3,975.56$

Share of Co_{2} emission by mode transport sector

Minimum Vehicle Information Requirements for Data Inventory

- Vehicle Make and Model
- Model Production Year
- Year of $1^{\text {st }}$ Registration
- Vehicle Identification Number
- Fuel Type
- Imported (New or Second Hand)
- Number of vehicles sold by model
- Body Type
- Engine Capacity
- Rated fuel economy per model and "test cycle" basis
- Fuel Injection type
- Transmission type
- Vehicle footprint
- Vehicle kerb Weight
- Emission Certificate Level

Sources of fuel economy/ Co_{2} Emissions data

- Car CO_{2} Emissions (UK) - http://car-emissions.com
- US Environmental Protection Agency- http://www.fuel economy.gov
- Car Fuel Data, CO_{2} and Vehicle Tax Tools http://carfuel.data.direct.gov.uk
- World car specifications http://www.carfolio.com/specification

Data Source based on -

- New European Drive Cycle (NEDC)
- Japanese tests cycles (JCO8)

Vehicle Population for data Inventory (Phase 1)

(1) LDVs imported in 2005 and 2013

	2005	2013
New Vehicles	5,221	8,342
Second Hand Vehicles	5,312	7,512
Total	10,553	15,854

(2) Cumulative Total LDVs

	$\mathbf{2 0 0 5}$	2013
New Vehicles	104,314	159,289
Second Hand Vehicles	37,272	81,741
Total	141,586	241,030

(3) Fuel economy and Coz emissions data sought for 127 makes/model clusters. The process will be described under the Chapter Data Entry Tool.

Breakdown of Cumulative of LDVs Fleet by fuel Type

Year	Petrol	Diesel	LPG	LPG + PETROL	Hybrid	Total
2005	98,740	42,618	209	15	4	141,586
2006	106,377	45,309	209	18	5	151,918
2007	114,531	48,108	210	20	5	162,874
2008	124,804	51,095	212	20	9	176,140
2009	133,795	53,486	213	25	55	187,574
2010	142,891	56,014	216	28	180	199,329
2011	151,822	58,463	218	28	337	210,868
2012	163,102	61,096	219	28	731	225,176
2013	175,915	63,446	223	28	1,418	241,030

Average fuel consumption and CO_{2} emissions for LDVs registered in 2005 and 2013

Vear		Avarage C_{2} Emision $/$ g/m)
205	1	186
2013	6.6	169

Phase 2

- Vehicles inventory covers all vehicles registered in 2014 and 2015
- LDVs include two-wheelers
- Inventory includes HDVs as well but these are assessed separately from LDVs

Vehicles registered in 2014 and 2015

	$\mathbf{2 0 1 4}$	$\mathbf{2 0 1 5}$
New Vehicles	18,844	16,122
Second Hand Vehicles	7,556	9,891
Total	26,400	26,013

Trend in LDVs registration 2005-2015

Cumulative LDVs Estimates for Year 2030 and 2050

Year	Cumulative Total LDVs Estimates
2005	141,586
2015	292,385
2030	490,390
2050	775,720

On the basis of the best line of fit, it is forecast that the number of LDV registered in 2030 will be almost 500,000 (+67\%) and 775000 (+165\%) in 2050 under a Business As Usual (BAU) scenario

Missing Fields

Number of vehicles for which data on fuel consumption and CO_{2} emissions not obtained

Numbe of misising fidds for LDV ans and HDV segisted in 2014 and			
Yearl	LDVs	HDVs	Total
2014	7	57	$64(0.24 \%)$
2015	0	26	$26(0.09 \%)$

LDVs and HDVs by class of Vehicle

	201,4	2015
Total Vehicles registered	26,400	26,013
Number of LDVs	$25,759(97.6 \%)$	$25,596(98.4 \%)$
Number of HDVs	$641(2.4 \%)$	$417(1.6 \%)$

Number of LDVs and HDVs by fuel type

Year	Type of Vehicles	Petrol	Diesel	Hybrid	Dlectric	LPG	Total
	All	22,219	3,742	436	2	1	26,400
	LDVs	22,215	3,106	435	2	1	25,759
	HDVs	4	636	1	0	0	641
$\mathbf{2 0 1 5}$	All	22,805	2,608	588	11	1	26,013
	LDVs	22,802	2,195	587	11	1	25,596
	HDVs	3	413	1	0	0	417

- Petrol driven vehicles constitute the vast majority
- Noteworthy increase in number of hybrid vehicles (from 55 in 2009 to 5,500 in 2017)

Average fuel consumption and CO_{2} emission for all vehicles registered in 2014 and 2015

Average Fuel Consumption (/100 km)

2014 6.2

6.2

153

- Although Inventory not for same vehicle fleet mix as that for Phase I, the average fuel consumption and CO_{2} emission shows a decrease from $7 \mathrm{~L} / 100 \mathrm{Km}$ in 2005 to $6.2 \mathrm{~L} / 100 \mathrm{~km}$ in 2015 and $186 \mathrm{~g} / \mathrm{km}$ of CO_{2} emission to $153 \mathrm{~g} / \mathrm{km}$ respectively.

Fuel economy and CO_{2} emission comparison for new and second hand vehicles 2014 and 2015

Year	Vehicle Type	Consumption (I/100 km)			Average CO2 Emissions (g/km)		
		All	New	Second Hand	All	New	Second Hand
		5.8	5.5	6.7	145	137	165
	HDVs	21.5	20.9	24.6	612	593	695
$\mathbf{2 0 1 5}$	LDVs	5.9	5.5	6.5	146	138	158
	HDVs	22.7	22.5	24.7	645	640	687

- Second hand vehicles consume almost 20% more fuel than new vehicles and emit 15% more CO_{2} (LDVs)

Fuel economy and CO_{2} emmission by fuel type

		Average Fuel Consumption （ $/ 100 \mathrm{~km}$ ）				Average CO_{2} Emissions （g／km）			
Year	Vehicle Type	$\begin{array}{ll} \text { D } \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{ll} \text { 己 } \\ 0 \\ 0 \\ 0 \\ 0 & 0 \\ 0 \end{array}$	$\begin{aligned} & \text { 弟 } \\ & ~ \end{aligned}$			$\begin{array}{ll} \text { 悉 } \\ 0 \\ 0 & 0 \\ 0 & 0 \\ 0 \end{array}$	或	苞
2014	LDVs	5.7	7.0	4.2	4.2	142	174	102	99
	HDVs	32.7	21.5	10.4	0	927	611	0	0
2015	LDVs	5.9	6.9	4.0	6.6	145	168	95	163
	HDVs	0	22.8	0	0	0	646	0	0

－Highlights boldly the low fuel consumption of hybrid LDVs and low CO_{2} emissions－ $4 \mathrm{~L} / 100 \mathrm{~km}$ and $95 \mathrm{~g} / \mathrm{km}$ more CO_{2} in 2015

Fuel Economy and CO_{2} emissions by engine displacement

	2014			2015		
	Number of Vehicles	Average Fuel Consumption ($\mathbf{1} 1 \mathbf{1 0 0} \mathrm{~km}$)	Average $\mathbf{C O}_{2}$ Emissions (g/km)	Number of Vehicles	Average Fuel Consumption ($\mathbf{1} 1 \mathbf{1 0 0} \mathbf{~ k m}$)	Average CO_{2} Emissions (g/km)
≤ 100	2629	3.0	79	1954	3.2	83
101-500	6798	5.1	131	6120	5.1	130
501-1000	1607	6.3	153	3137	6.4	157
1001-1500	9008	6.6	162	9086	6.3	155
1501-2000	3339	6.8	164	3296	6.8	164
2001-2500	1421	7.7	189	1536	7.1	177
2501-3000	654	8.1	205	425	7.8	194
3001-3500	250	8.4	205	14	8.0	201
3501-4000	116	12.5	339	58	9.2	233
4001-5000	152	18.2	510	134	20.5	578
5001-10000	320	22.0	625	165	22.5	647
>10000	45	35.3	1000	51	32.8	920

- Reveals valuable information on consumer's choice
- Mainly for - two-wheelers of 101-500 cc
- cars of 1001 - 1500 cc
- Decline in number of vehicles of 3000 cc or more
- Improvement in fuel consumption and CO_{2} emission of vehicles in the range $1001-1500 \mathrm{cc}$

The need for a breakdown of inventory data

- Vehicle registration data has been worked out
- by class of vehicle
- by class subdivided into HDVs and LDVs
- by fuel type
- by engine technology
- Fuel economy and CO_{2} Emission have been detailed
- by class of vehicle registered
- by new and second hand vehicle
- by fuel type both for LDVs and HDVs
- by engine displacement
- by engine displacement and fuel type

The need for a breakdown of inventory data

- It enables development and implementation of targeted policies/strategies to promote fuel economy and Co_{2} abatement.
- It enables influencing consumer choice towards vehicles with higher fuel economy and lower CO_{2} emission through public information/fiscal incentives.
- Breakdown of Inventory data reveals important information as to which segment of vehicle population has the maximum potential for fuel economy and CO_{2} emission reduction.
- It reduces the country's reliance on fossil fuels and expenditure on importation of such fuels.
- It enables the country to reap environmental benefits through lesser CO_{2} emissions

Trend of fuel economy and CO_{2} Emissions 2005 - 2015 LDVs

	2005	2013	2015
Fuel Economy L/100 Km)	7.0	6.6	5.9
Co $_{2}$ Emission (g/km)	186	169	145
All vehicles (2015) - 6.2L/100 km and $153 \mathrm{~g} / \mathrm{km}$			

Comparison of fuel economy with global average (LDV only) (L/100 km)

	$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 8}$	$\mathbf{2 0 1 1}$	2013	2014
Global Average	8.07	7.67	7.2	7.1	-
OECD Average	8.1	7.6	7.0	6.9	-
Non OECD Average	7.8	7.6	7.5	7.2	-
Mauritius	7.0	-	-	6.6	5.8

- Source GFEI presentation (Malawi)

Fuel economy policies can work substantially

Development of a Data Entry Tool

- NTA database provides detailed information on all vehicles registered
- During Phase 1 of the Inventory -
> Additional function developed in vehicle registration software in format required for GFEI inventory
> This function enable the registered vehicles to be clustered by make, model, engine capacity, Country of origin, new or second hand, fuel type etc.
> This information was generated on MS Excel
> Fuel Economy and Co_{2} Emission data were sought for each cluster of vehicles to constitute the Inventory

THE PROCESS STEPWISE

Step 1: On the Registration and Licence System menu of the vehicle registration system, go to the Query tab and click on Global Fuel Economy Initiative from the dropdown row.

Step 2: Once in the Global Fuel Economy Initiative menu, type in the Class of vehicle and the year bracket on the Date of Registration fields.

Fis Registration A Licence System - [FLUIO1-Ghobal Fuel Lconomy Initiative]

Global Fuel Economy Initiative menu within the NTA vehicle registration system

Step 3: Click on the File Name field to open the GFEI folder to select the required Common Separated Values (CSV) file and year bracket

Sample vehicle data stored within CSV file of 1975-2013. The CSV files store tabular data for all types of vehicles as shown above. It is noted that fuel consumption and CO_{2} emission fields are missing.

Step 4: Once the selected CSV file is imported in the DET software, press the Print File button on the Global Fuel Economy Initiative menu at Step 2. This will generate the vehicle data sheet in MS Excel as shown below.

Sample of data collected after extracting into MS Excel format.

Sample of registration data for vehicles

Further Enhancement of Software

- The date entry tool is being further enhanced
- Two additional fields are being provided - one for fuel economy and one for Co_{2} Emissions.
- Vehicle importers and dealers to supply mandatorily fuel economy and CO_{2} Emission data for all new and second hand vehicles being registered for first time in Mauritius.
- Information keyed in when vehicle being registered
- Software also being enhanced to capture in-use vehicle emission data from periodic vehicle roadworthiness test.
- Accurate fuel economy CO_{2} emission data available both for vehicle inventory and other climate change reporting needs.

THANK YOU

