Final results workshop of Biennial Global Assessment of POPS laboratories (2nd round)

June 24-25, 2014 , Freiburg, Germany

EU-RL Proficiency Tests for PCDD/Fs and PCBs

- Evaluation of data and scoring of results -

Alexander Kotz, Johannes Hädrich, Kerstin Wahl, Katharina Djuchin and Rainer Malisch

European Union Reference Laboratory for Dioxins and PCBs in Feed and Food, Freiburg, Germany

Criteria in EU regulations

Current EU regulations (1)

Methods of analysis (Commission Regulations (EC) No 152/2009 (Feed), (EU) No 589/2014 (Food))

- > Requirements for laboratories:
 - [...], laboratories shall be accredited by a recognised body [...] to ensure that they are applying analytical quality assurance. Laboratories shall be <u>accredited</u> following the <u>EN ISO/IEC 17025</u> standard.

EN ISO/IEC 17025:

- 5.9 Assuring the quality of test and calibration results:
 - Quality control procedures for monitoring of the validity of tests and calibrations
 - Recording of data for detection of trends and reviewing of results
 - Planning and review of monitoring may include
 - Participation in interlaboratory comparison or proficiency testing programmes
- Laboratory proficiency shall be proven by the continuous <u>successful participation in</u> interlaboratory studies for the determination of PCDD/Fs and dioxin-like PCBs in relevant food/feed matrices and concentration ranges.

Interlaboratory studies

Definitions:

Interlaboratory study:

A study in which **several laboratories** measure a quantity in one or more **identical portions** of homogeneous, stable **materials** under **documented conditions**, the results of which are compiled into a single report.

[IUPAC, NOMENCLATURE OF INTERLABORATORY ANALYTICAL STUDIES, Pure & Appl. Chern., Vol. 66, No. 9, pp. 1903-191 1, 1994.]

<u>Laboratory performance study:</u>

An interlaboratory study that consists of one or more analyses or measurements by a **group of laboratories** on one or more **homogeneous**, stable **test samples** by the **method selected or used by each laboratory**. The reported **results** are **compared** with those from **other laboratories** or with the known or assigned **reference value**, usually with the objective of evaluating or improving laboratory performance.

[IUPAC, NOMENCLATURE OF INTERLABORATORY ANALYTICAL STUDIES, Pure & Appl. Chern., Vol. 66, No. 9, pp. 1903-191 1, 1994.]

Proficiency Testing (PT):

Evaluation of participant performance against pre-established **criteria** by means of interlaboratory comparisons

[EA-4/18 TA :2010- Guidance on the level and frequency of proficiency testing participation, European co-operation for Accreditation]

Interlaboratory Comparison:

Organization, performance and evaluation of measurements or tests on the same or similar items by two or more laboratories in accordance with predetermined conditions [EA-4/18 TA :2010– Guidance on the level and frequency of proficiency testing participation, European co-operation for Accreditation]

Current EU regulations (2)

Methods of analysis (Commission Regulations (EC) No 152/2009 (Feed), (EU) No 589/2014 (Food))

Basic requirements for analytical procedures

High accuracy (trueness and precision) – valid estimate of true concentration

- Accuracy of the measurement: the closeness of the agreement between the result of a measurement with the true or assigned value of the measurand.
- Trueness: Difference between the mean value measured for an analyte in a certified material and its certified value, expressed as percentage of this value
- Precision: Relative standard deviation calculated from results generated under reproducibility conditions

Definition in Commission Decision 2002/657/EC:

- "Trueness means the closeness of agreement between the average value obtained from a large series of test results and an accepted reference value."
- Within-laboratory reproducibility means precision obtained in the same laboratory under stipulated (predetermined) conditions over justified long time intervals."

Current EU regulations (3)

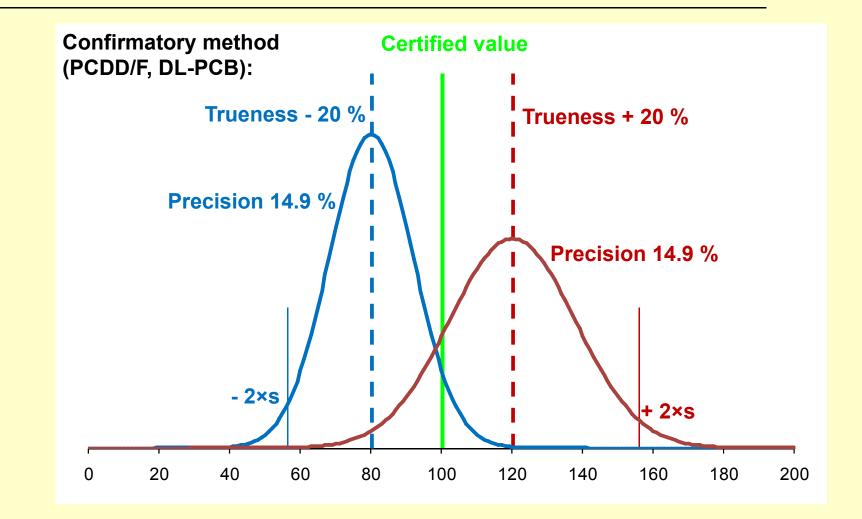
Methods of analysis (Commission Regulations (EC) No 152/2009 (Feed), (EU) No 589/2014 (Food))

Basic requirements for analytical procedures

Validation in the range of level of interest and general quality control measures:

> Demonstration of performance of method in range of level of interest with acceptable CV

Analytical criteria:


> Criteria for TEQ and BEQ values for screening and confirmatory methods

	Screening with bioanalytical or physico-chemical methods	Confirmatory methods
False-compliant rate	< 5 %	
Trueness		- 20 to + 20 %
Repeatability (RSD _r)	< 20 %	
Within-laboratory reproducibility (RSD _R)	< 25 %	< 15 %

Current EU regulations (4)

Dioxins and PCBs

State Institute for Chemical and Veterinary Analysis of Food CVUA Freiburg

AN A

Proficiency tests

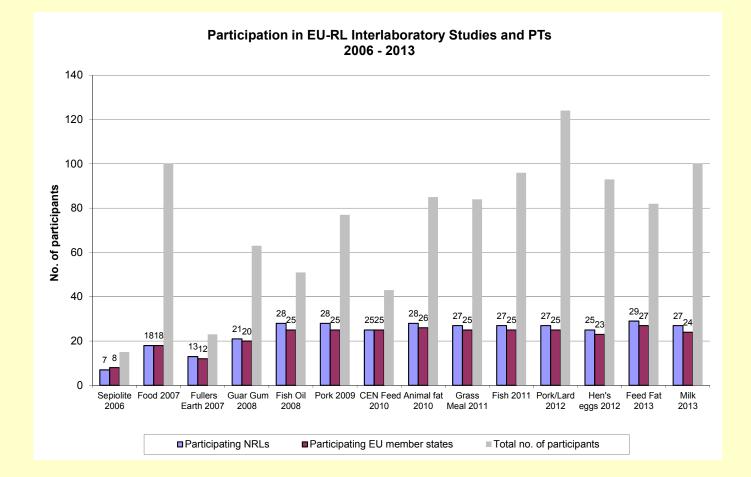
EU-RL proficiency tests

- One of the tasks of European Union Reference Laboratory (EU-RL) for Dioxins and PCBs in Feed and Food according to Regulation (EC) 882/2004:
 - Organization of comparative tests for National Reference Laboratories (NRLs) including appropriate follow-up
- PTs also open for official laboratories of EU member states and in certain cases also for commercial laboratories
- Organization and performance of PTs based on requirements of ISO/IEC 17043, ISO 13528 and IUPAC technical report on proficiency testing*
- Accreditation according to ISO/IEC 17043

*The international harmonized protocol for the proficiency testing of analytical chemistry laboratories" (IUPAC) Technical Report), Pure Appl. Chem, Vol. 78, No. 1, pp-145-196, 2006

Overview of EU-RL proficiency tests

- 15 Interlaboratory studies and proficiency tests performed between 2006 and 2014
 - Sepiolite 2014 (preliminary results available)
 - Milk 2013
 - Feed Fat 2013
 - Hen's Eggs 2012
 - Pork sausage / lard 2012
 - Fish / fish oil 2011
 - Grass meal 2011
 - Animal fat 2010
 - CEN PT 2010 (organized by RIKILT Institute of Food Safety, participation of NRLs)
 - Canned Pork sausage 2009
 - Fish oil 2008
 - Guar Gum 2008
 - Fullers Earth 2007
 - Dioxins in Food 2007 (organized by Norwegian Institute of Public Health, participation of NRLs)
 - Sepiolite 2006



10 / Proficiency tests

Participation

Dioxins and PCBs

Analytes of interest

- WHO-PCDD/F-PCB-TEQ (upper, middle and lower bound)
- WHO-PCDD/F-TEQ (upper, middle and lower bound)
- WHO-PCB-TEQ (upper, middle and lower bound)
- Sum of six indicator PCBs (upper, middle and lower bound)
- 17 2,3,7,8-substituted PCDD/Fs
- 12 dioxin-like PCBs
- 6 Indicator PCBs (# 28, 52, 101, 138, 153, 180)
- Total-BEQ, PCDD/F-BEQ, PCB-BEQ (bioanalytical screening methods)
- Lipid content, moisture content

Units: Depending on requirements in EU regulations

4 sum parameters

35 individual congeners

3 BEQ sum parameters

12 / Proficiency tests

Methods of analysis

The following detection methods can be applied:

- **GC-HRMS** methods for PCDD/Fs and dioxin-like PCBs
- GC-MS/MS (or other alternative methods for GC-HRMS) for PCDD/Fs and dioxin-like PCBs
- Bioanalytical screening methods for PCDD/Fs and dioxin-like PCBs
- Any kind of method for indicator PCBs

Reporting of results

Laboratories applying physico-chemical methods:

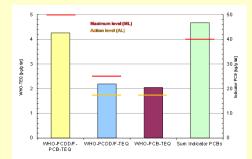
- Analytes of interest
- Indication, if test sample exceeds respective EU legal limits
- Measurement uncertainty

Laboratories applying **bioanalytical screening methods**:

- PCDD/F and DL-PCB results in bioanalytical equivalents (if applicable)
- Indication, if test sample is compliant or suspected to be noncompliant with EU legal limits and confirmation is required

Test material

- Preparation of sufficient amount of test material for proficiency test
 - Regular market food / feed:
 - **Naturally contaminated** material (fish, meat)
 - Material from contamination incidents (guar gum)
 - Mixture of contaminated and not contaminated material (hen's eggs)
 - Spiking of test material with standards, technical PCB mixtures (fat, milk powder)
- Test samples with concentrations in the range of EU legal limits, if possible
- Test for sufficient homogeneity performed for sum parameters and congeners



Statistical evaluation

Assigned value

Evaluation according to ISO 13528 and IUPAC technical report

Assigned values for congeners and sum parameters:

Consensus value, derived from participants' GC-MS,GC-ECD results:

- Huber robust mean after exclusion of extreme outliers (± 50 %)
- Examination of results using Histogram and Kernel density plot
- Calculation only if more than 2/3 of all reported results contributing

• Sum parameters:

 Calculation of TEQ values on basis of concentrations of individual congeners (comparison with reported TEQ-values for plausibility check)

Individual congeners:

- Only for congeners with less than 1/3 of reported results below LOQ
- Use of LOQ for evaluation, if concentrations for congeners not reported or below LOQ

Scoring of results

EU-RL for Dioxins and PCBs in Feed and Food

Z-scores:

 $z = (x - x_a) / \sigma_p$

x_a: assigned value

x: participant's result

 σ_p: standard deviation for proficiency assessment WHO-TEQ: 10 % Sum of indicator PCBs: 15 % Evaluated individual congeners: 20 %

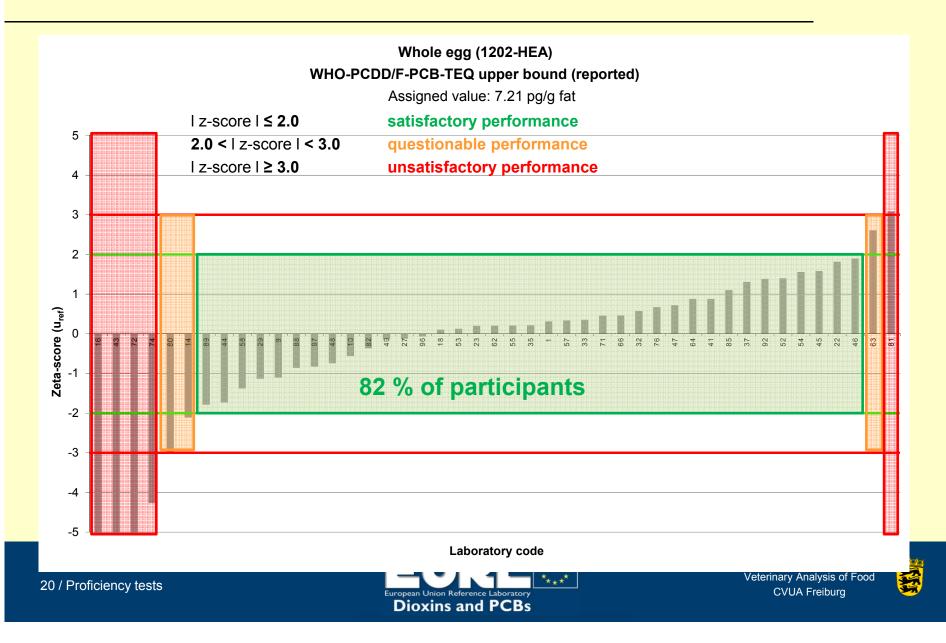
- Defined criteria for standard deviation considerable stricter compared to the analytical criteria for trueness and precision as laid down in respective Commission Regulations for food and feed
 - **WHO-TEQ**: Trueness -20 to +20 %, Precision < 15 %
 - Sum indicator PCBs: Trueness -30 to +30 %, Precision ≤ 20 %

Standard deviation for proficiency assessment

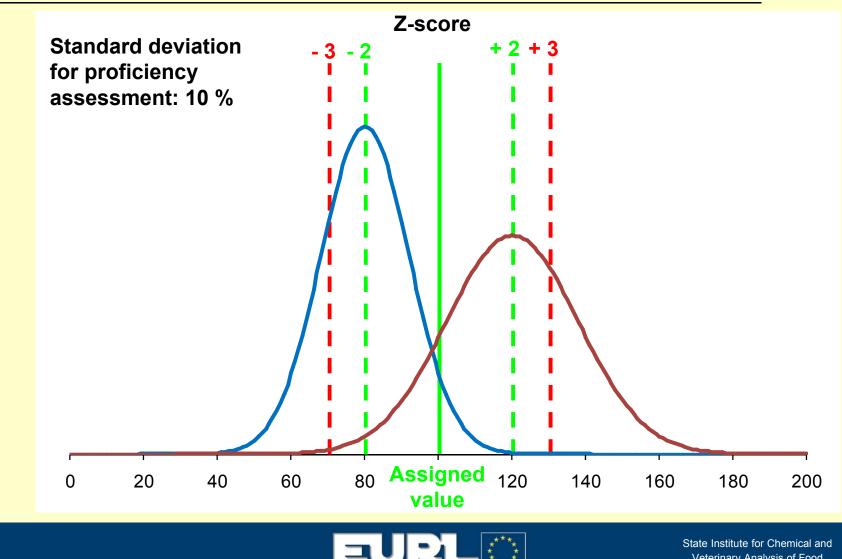
Definition of standard deviation by different providers:

Provider	Interlaboratory study	Standard deviation
Bipea	PCB and dioxins in agri-food domain	30 %
Norwegian Institute of Public Health	Interlaboratory Comparisons on POPs in 20 % Food	
FAPAS	Proficiency Tests Environmental Contaminants (PCBs and Dioxins)	22 %
Quasimeme	Laboratory Performance Studies	12.5 % + constant error
EU-RL for Dioxins and PCBs in feed and food	Proficiency Tests for food and feed	10 %, 15 % (sum parameters), 20 % (congeners)

Evaluation of performance (1)


Interpretation of z-scores (ISO/IEC 17043)

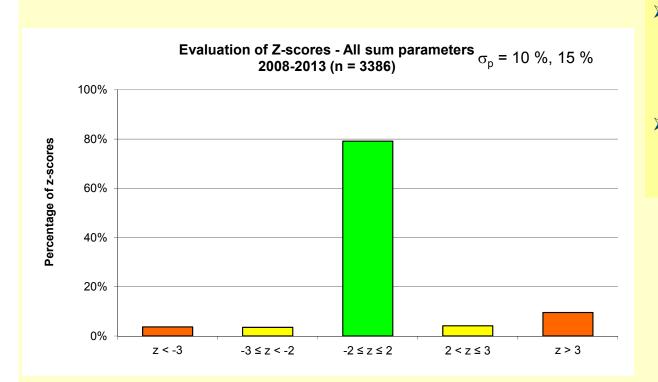
l z-score l ≤ 2.0	satisfactory performance
2.0 < z-score < 3.0	<pre>questionable performance</pre>
l z-score l ≥ 3.0	unsatisfactory performance → "action signal"



Evaluation of performance (2)

Scoring of results EU-RL for Dioxins and PCBs in Feed and Food

Dioxins and PCBs


21 / Proficiency tests

Veterinary Analysis of Food CVUA Freiburg

Evaluation of z-scores

Physico-chemical methods

- Percentage rate of z-scores for 10 PTs including 18 matrices
- In total 3386 matrix/analyte combinations

22 / Proficiency tests

Scoring system

"Positive scoring system"

- Developed within EURL/NRL network
- One assessment for each PT sample covering all relevant sum parameters and congeners
- Scoring system applicable for sum parameter concentrations in the range (about 0.5 to 4 times) of the level of interest (maximum or action level)

Positive scoring system (1)

- Principles:
 - Calculation of z-scores for sum parameters and evaluated individual congeners
 - Calculation of the **positive scores** according to:

Positive scoring system	l z-score l ≤ 2	2 < z-score ≤ 3	z-score > 3
Individual congeners	Positive score	Positive score	Positive score
Contribution to sum parameter* > 10 %	12	6	0
Contribution to sum parameter* 3 – 10 %	8	4	0
Contribution to sum parameter* < 3 %	6	3	0
Not evaluated congeners	0	0	0

*separately for the respective sum parameters WHO-PCDD/F-TEQ, WHO-PCB-TEQ and the sum of six indicator PCBs

Positive scoring system (2)

Calculations:

 Calculation of maximum achievable scores (I z-score I ≤ 2) for PCDD/F and DL-PCB and indicator PCB congeners separately:

Maximum score = Σmax. score_(> 10 %) + Σmax. score_(3-10 %) + Σmax. score_(< 3 %)

 Calculation of the participant's scores for PCDD/F and DL-PCB and indicator PCB congeners separately:

Participant's score = Σscore_(> 10 %) + Σscore_(3-10 %) + Σscore_(< 3 %)

- Calculation of achieved **scoring percentage** for each participant:

Participant's scoring percentage = Participant's score / Maximum score • 100

Positive scoring system (3)

Criteria for successful participation:

Sum parameters:	≤ 1 parameter with I z-score I > 2, no parameter with I z-score I > 3
PCDD/F congeners:	≥ 75 % of maximum score
DL-PCB congeners:	≥ 75 % of maximum score
Indicator PCB congeners:	≥ 75 % of maximum score

- > Assessment based on the positive scoring system performed for each PT test sample
- > A laboratory participates successfully in a PT, if all above mentioned criteria for the reported analytes are met for each PT test sample

Evaluation of results

Bioanalytical screening methods

According to Commission Regulations (EU) No 278/2012 and 589/2014, "a screening method in principle classifies a sample as compliant or suspected to be non-compliant. For this, the calculated BEQ level is compared to the cut-off value [...]. Samples below the cut-off value are declared compliant, samples equal or above the cut-off value as suspected to be non-compliant, requiring analysis by a confirmatory method."

- **Main criterion** for evaluation of results from bioanalytical screening methods:
 - Ability to reliably identify compliant samples and samples suspected to be non-compliant with established legal limits
- Evaluation of test samples:
 - Comparison of assigned values with legal limits

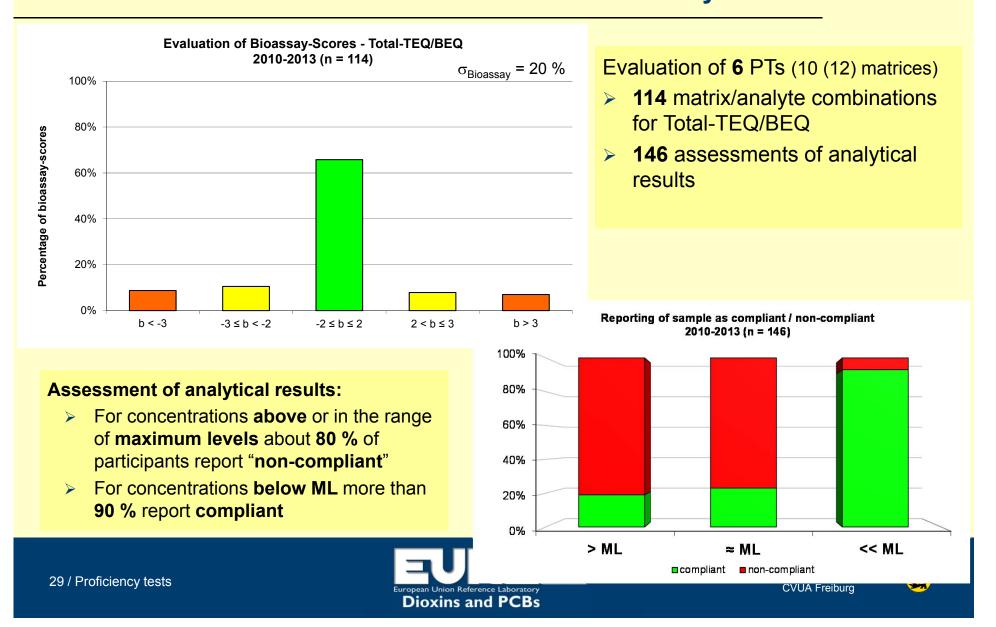
Scoring of results

Bioanalytical screening methods

• Bioassay-scores:

- Direct comparison of bioassay-scores and z-scores not possible (focus of bioanalytical screening methods on the identification of compliance or potential non-compliance of a sample)
- Tool to assess method performance within the scope of external quality control measures

Bioassay-score = $(x - x_a) / \sigma_{bioassay}$


- x_a: assigned value (results of physical-chemical methods)
- x: participants result (BEQ from bioanalytical screening method)

 $\sigma_{bioassay}$: bioassay target deviation (= 20 %)

Bioanalytical screening methods Bioassay-scores

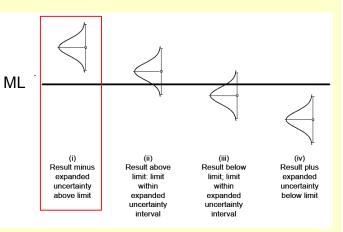
Further assessment of results

Assessment of analytical results Regulation

Compliance with legal limits (Commission Regulations (EU No 278/2012 and 589/2014)

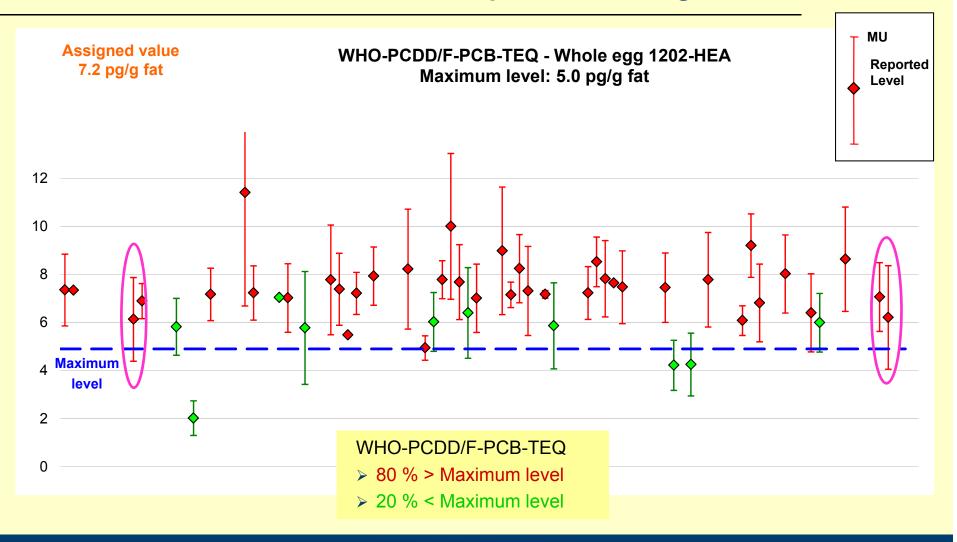
- The lot is accepted, if the result of a single analysis performed by a confirmatory method does not exceed the respective maximum level [...] taking into account the measurement uncertainty.
- The lot is non-compliant with the maximum level [...], if the upperbound analytical result obtained with a confirmatory method and confirmed by duplicate analysis, exceeds the maximum level beyond reasonable doubt taking into account the measurement uncertainty.

[Com.Reg. (EU) No 589/2014: The mean of two determinations is used for verification of compliance.]

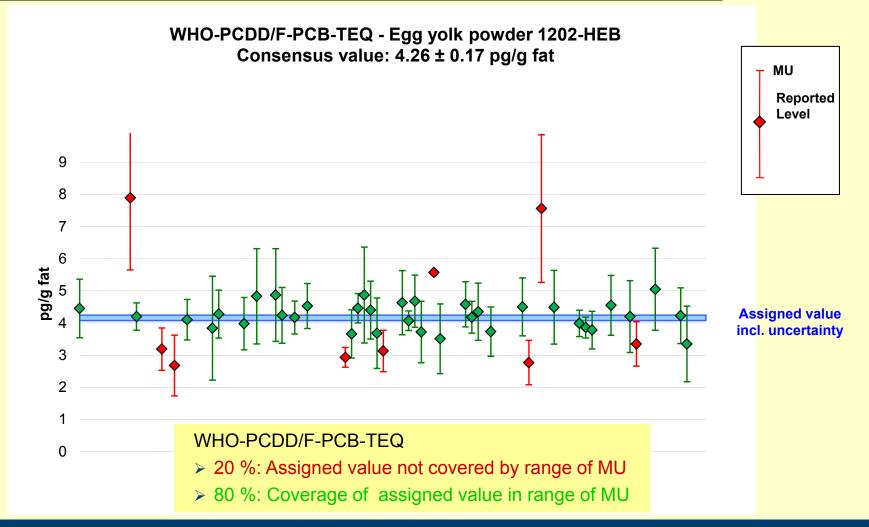

- The measurement uncertainty may be taken into account according to one of the following approaches:
 - by calculating the expanded uncertainty, using a coverage factor of 2 which gives a level of confidence of approximately 95 %.
 - by establishing the decision limit (CCα) according to the provisions of Decision 2002/657/EC

Assessment of analytical results Physico-chemical methods

- Comparison of reported concentrations for sum parameters with respective EU legal limits
- Application of measurement uncertainty to analytical result
- Is the estimation of the measurement uncertainty realistic?
 - Comparison of the reported results including measurement uncertainty with assigned value
 - Comparison of uncertainty estimate with reproducibility standard deviation for collaborative trial
 - E_n -number and Zeta(ζ)-score



Assessment of Compliance with an Upper Limit (Eurachem/CITAC Guide: Use of uncertainty information in compliance assessment)


Assessment of analytical results Comparison with legal limits

Comparison of MU and assigned value

Scoring of results with uncertainty (1) E_n -number and Zeta(ζ)-score

• E_n-number:

$$\mathbf{E_n} = \frac{\mathbf{x_{lab}} - \mathbf{xa}}{\sqrt{\mathbf{U_{lab}}^2 + \mathbf{U_{av}}^2}}$$

x_a: assigned value

x_{lab}: participants result

 U_{lab} : expanded uncertainty of participant's result U_{av} : expanded uncertainty of assigned value

- Use of expanded uncertainties
- Use of 1 as critical value for E_n-numbers

Zeta(ζ)-score:

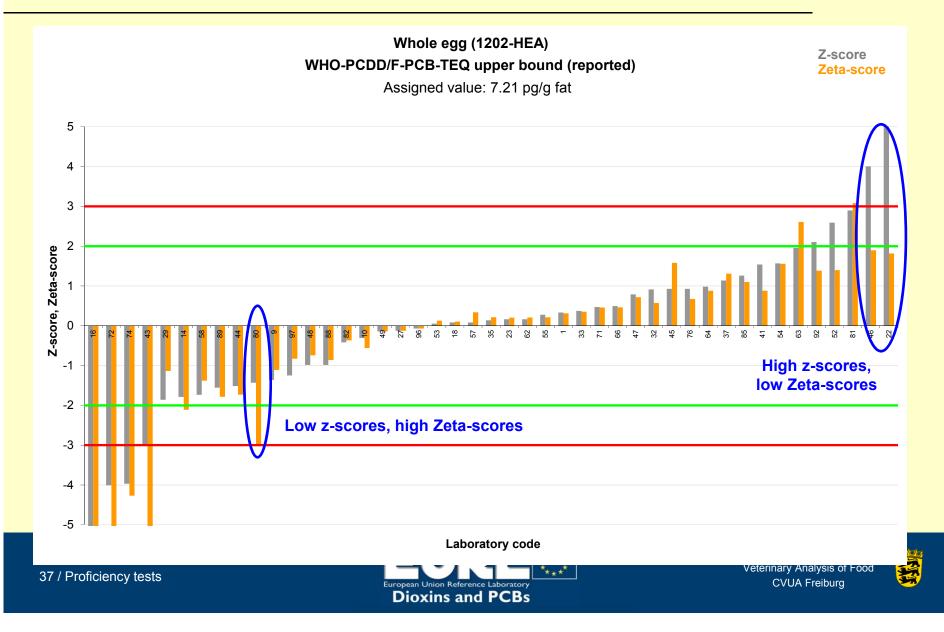
$$\zeta = \frac{x_{lab} - xa}{\sqrt{u_{lab}^2 + u_{av}^2}}$$

x_a: assigned value x_{lab}: participants result

 u_{lab} : combined standard uncertainty of part.'s result u_{av} : standard uncertainty of assigned value

- Use of standard uncertainties
- Critical values for ζ-scores comparable to z-scores

[ISO/IEC 17043, ISO 13528]


Scoring of results with uncertainty (2) E_n -number and Zeta(ζ)-score

- E_n-number and Zeta(ζ)-score provide indication, if applied measurement uncertainty consistent with deviation from assigned value
- Useful only in conjunction with z-scores
- Tool for participants to check own estimates of uncertainty
- For evaluation in PT only meaningful, if uncertainty estimates determined in consistent manner by all participants
- Calculations correct only if x_{lab} and x_{av} independent
 - in principle not applicable for use of consensus values of all participants

Comparison Z-score – Zeta-score

Summary

- Evaluation of results of EU-RL PTs based on international standards and IUPAC-protocol
- Evaluation of performance of participants based on ...
 - Deviation of participants' results from assigned values
 - Assessment of analytical results using physico-chemical and bioanalytical screening methods
- Evaluation of application of measurement uncertainty
- Criteria for evaluation of performance of results stricter than analytical criteria for trueness and precision as laid down in Commission Regulations (EU) 589/2014 and 278/2012
- Approach supports attempt to demonstrate and maintain the required high analytical quality of European NRLs

References

- ISO/IEC 17043: Conformity assessment General requirements for proficiency testing
- ISO 13528: Statistical methods for use in proficiency testing by interlaboratory comparisons
- The international harmonized protocol for the proficiency testing of analytical chemistry laboratories" (IUPAC) Technical Report), Pure Appl. Chem, Vol. 78, No. 1, pp-145-196, 2006
- IUPAC, NOMENCLATURE OF INTERLABORATORY ANALYTICAL STUDIES, Pure & Appl. Chern., Vol. 66, No. 9, pp. 1903-191 1, 1994
- EA-4/18 TA :2010
 Guidance on the level and frequency of proficiency testing participation, European co-operation for Accreditation
- AMC Technical Brief No. 2: The z_L-score--combining your proficiency test results with your own fitness for purpose criterion
- AMC Technical Brief No. 11: Understanding and acting on scores obtained in proficiency testing schemes
- AMC Technical Brief No. 15: Is my uncertainty estimate realistic?
- AMC Technical Brief No. 16: Proficiency testing: assessing z-scores in the longer term
- AMC Technical Brief No. 18a: What is proficiency testing? A guide for end-users of chemical data [http://www.rsc.org/Membership/Networking/InterestGroups/Analytical/AMC/TechnicalBriefs.asp]

Thank you very much for your attention !

