WHY DO WE MAKE MISTAKES?

Jacob de Boer

LOOKING FURTHER

SEA PALACE AMSTERDAM

The human error.....

We make one mistake per hour (NASA)

Three categories:

Active errrors:

e.g. missed return in tennis or orange traffic light

Thinking errors:

wrong judgment of situation, e.g. wrong exit on highway

Not-follow-up errors:

e.g. taking short cut, ignoring max. speed sign

Why do we make mistakes?

- 1. We surround ourselves with kindred spirits
- 2. We want to be 'liked', so we are not critical
- 3. We overestimate ourselves
- 4. 'Cognitive resonance reduction': we change the truth
- 5. 'Belief perseverance': we believe in a 'fixed' world
- 6. We ignore information that changes our perspective
- 7. We want fast answers

How to reduce errors?

- Become conscious of mistakes
- Listen to arguments
- Accept 'a different truth'
- Prepare, read, think, use checklists
- Accept mistakes that were made, study it and learn from it
- Be open to others on your mistakes

AIR_CRASH VRIJE UNIVERSITEIT AMSTERDAM

LOOKING FURTHER

Evaluation of VU results PCBs/OCBs for the UNEP ILS

- PCB & OCP results both show several deviations in Z-scores
- Deviations of PCB results seems more random than OCP results

LOOKING FURTHER

PCBs

Reporting error:

PCB 153 and 138 were switched because the order is different in our spreadsheet compared to the reporting sheet of UNEP

Chromatographic problems:

More detailed look into the chromatograms also revealed that the GC-MS system used for measuring the samples was not optimal:

- Whole system was not at best sensitivity
- Column had been in use for a long time

We re-analyzed the UNEP samples (biota and sediment) together with external reference samples: CRM 682 (mussel) and CRM 329 (sediment)

Results re-analysis PCBs

Z-scores

	UNEP ILS biota		CRM 682	UNEP ILS sediment		CRM 329
	official	Re-analyzed		official	Re-analyzed	
PCB 28	-3.7	0.5	2.7	-4.5	-2.4	0.5
PCB 52	-0.4	0.4	1.1	1.6	3.6	-1.3
PCB 101	-0.3	0.5	n.a.	5.4	3.9	-0.7
PCB 153	-1.7	3.0	-0.5	4.2	2.0	2.1
PCB 138	6.6	0.3	0.7	6.3	1.0	0.8
PCB 180	1.0	0.1	-0.7	4.7	2.6	0.6

n.a. = not available

red numbers = no assigned value, mean value is used

green = close to LOQ

Calculation error:

The internal standard is calculated as a normal compound and recovery is calculated based on the difference with the *added concentration*

Calculated recovery is used to correct for found concentrations

Problem occurs if the *added concentration* used in the <u>spreadsheet</u> differs from the one used in the GC-MS program (different dilution factor)

In our case 10 ng was used in the GC-MS program and subsequently 20 was calculated the calculation spreadsheet

This means when 9 ng is calculated with the GC-MS program (9/10 = 90% rec) and this is used in the spreadsheet it corrects the results for 9/20 = 45% rec *Leading to too high concentrations and wrong z-scores!*

Example p,p'-DDD

The end volume of the extract is 0.5 ml The sheet calculates: IS = 10 ng in 0.5 ml = 20 ng/ml

Concentration in fish sample:

```
13.61 ng / 1.7765 g = 7.66 ng/g
6.80 ng / 1.7765 g = 3.83 ng/g

Assigned value = 4.7 ng/g
Assigned value = 4.7 ng/g

Z-score = (7.66 - 4.7)/(0.125 x 4.7)
Z-score = (3.83 - 4.7)/(0.125 x 4.7)

Z-score = 5.04
Z-score = -1.48

Unsatisfactory!
Satisfactory!
```

Which mistakes did we make?

- 1. We surround ourselves with kindred spirits
- 2. We want to be 'liked', so we are not critical
- 3. We overestimated ourselves
- 4. 'Cognitive resonance reduction': we change the truth
- 5. 'Belief perseverance': we believe in a 'fixed' world
- 6. We ignored information that changes our perspective
- 7. We wanted fast answers

DISCUSSION ITEMS

Standard solutions: e.g. Table 2, OCPs, CV 15-75%, why?

heptachlors

ddt

chlordanes

0

drins

DISCUSSION ITEMS

• Fish: e.g. PCB, Fig. 61, CV ca. 50%, why?

Dieldrin in Fish First Participation

Laboratory code

2,3,7,8-TeCDD test solution vs experience

Laboratory code

Discussion Groups

- Three (or more) suggestions to improve results
- Suggestions to improve ILS
- Highlights of this exercise

POSSIBLE ERRORS AND PROBLEMS

- Chromatography
- Extraction
- Clean Up
- Calculation
- Validation
- Contamination
- Staff quality
- Instrumentation (e.g. ECD/MS)
- Lack of (C)RMs
- Analytical standards
- Planning issues

How can we achieve CVs of 25%?

