

Cleaner fuels to support vehicle emission reduction in Southern Africa

Stuart Rayner: National Association of Automobile Manufacturers of South Africa Blantyre : May 2017

Presentation sections

- European CO₂ emission reductions and plans
- Vehicle CO2 emission testing
- Vehicle technology trends to reduce emissions
- South Africa : Vehicle emission and fuel standards:
- SA Department of Energy fuel economy labelling
- SA National Treasury CO2 vehicle taxation
- Summary

European new passenger car fleet standards and CO₂ legislation

- 130 gr/km average by 2015 progressive intro from 2012.
- 95 gr/km average by 2020 subject to review.
- Waver for sub 10,000 units pa and special arrangements for sub 300,000 units manufacturers.
- Not initially applied to light commercial vehicles now set at 175 gr/km from 2017.
- Results in an effective 19% decrease in CO₂ emissions for all vehicles compared to current fleet.

Implications for Sub Saharan markets ?

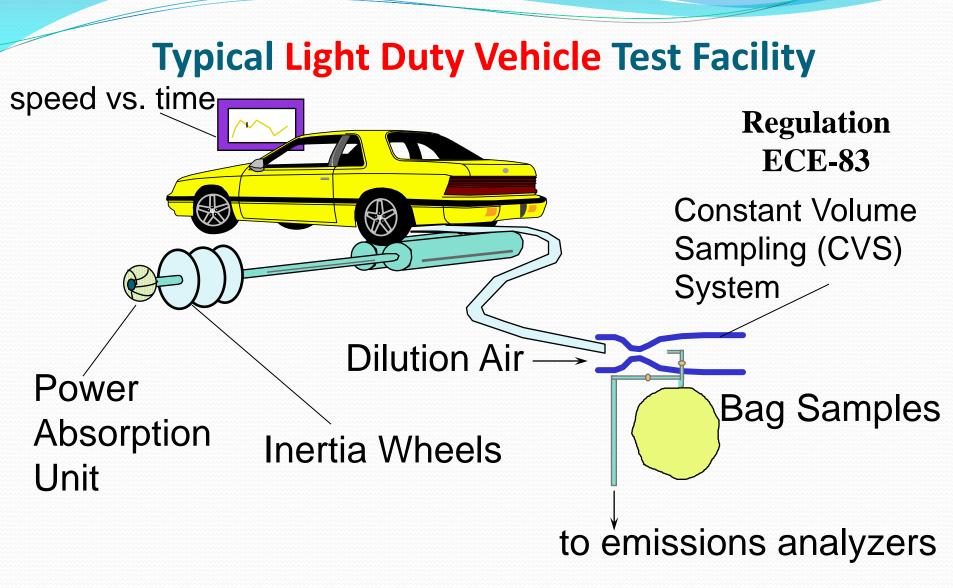
European Fuel specifications: sulphur legislation

EU Member States must make petrol and diesel having a maximum sulphur content of 10mg/kg widely available from 2005.

100% availability of such fuel mandated in 2009.

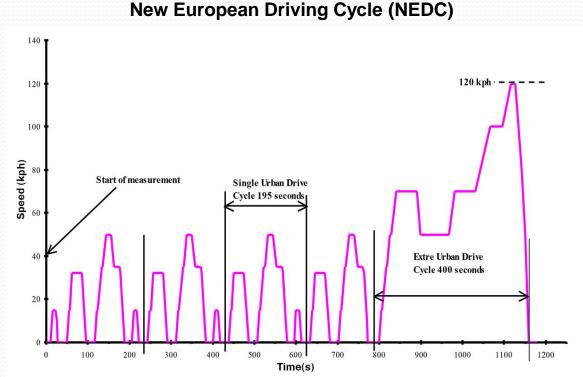
Light Vehicle Emissions Test Cell

Small vehicles only (Fully Laden < 3.5 t). Multi million dollar investments


On-going calibration / correlation / maintenance requirements to maintain accuracy, precision and reliability Highly skilled operators required

Ford Motor Company

Emission/CO2 Testing Facilities


Slide: Ford Motor Company

Measurements in g/km

New European Driving cycle (NEDC)

- New European Emissions / CO2 Cycle applied from year 2000.
- Excellent for repeatability and assessment against legislative standards.
- Recognised by both Industry and Legislators for some time as not representative of real driving.
- NEDC not only used in Europe but Mauritius / India / China / Russia / S Africa and many parts of South America.

Vehicle technology trends: Petrol Engines

- Gasoline Direct Injection
- Turbo charging

BLOCK

"Downsizing & Boosting"

New Vehicle Technology Migration

Mid Term

Full implementation of

known technology

2012

2020

Recent/Near Term

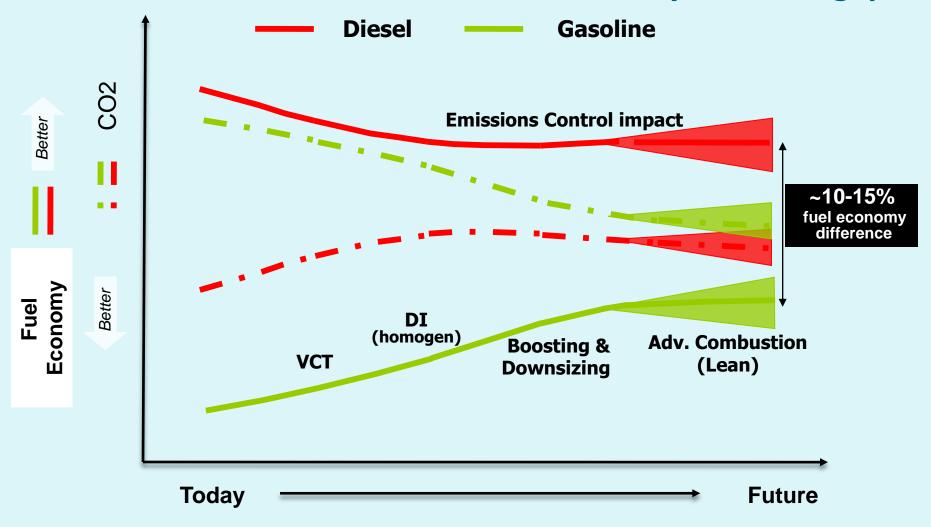
Begin migration to advanced technology

Near Term

- Significant number of vehicles with Stratified Injection technology
- Dual clutch and 6-speed transmissions replace 4- and 5-speeds
- Increased hybrid applications
- Increased unibody applications
- Introduction of smaller cars and CUVs
- Electric power steering
- Battery management systems
- Aero improvement

Mid Term

- Weight reduction
- Engine displacement reduction aligned with weight save
- Stratified injection engines available in nearly all vehicles
- Increased use of hybrids as a percentage of gas engines
- Increased diesel use as market demands
- Additional Aero improvements
- EPAS approaching 100% on light-duty vehicles
- Introduction of plug-in hybrids


Long Term

Volume roll-out of hybrid electric technologies and alternative energy sources

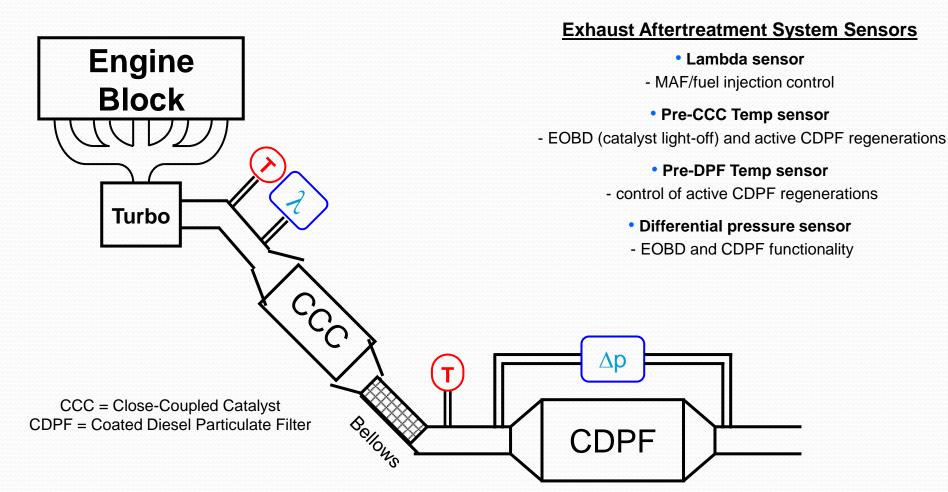
Long Term

- Percentage of internal combustion dependant on renewable fuels
- Volume introduction of hybrids and plug-in hybrids
- Introduction of Battery Electric and fuel cell vehicles
- Clean electric / hydrogen fuels

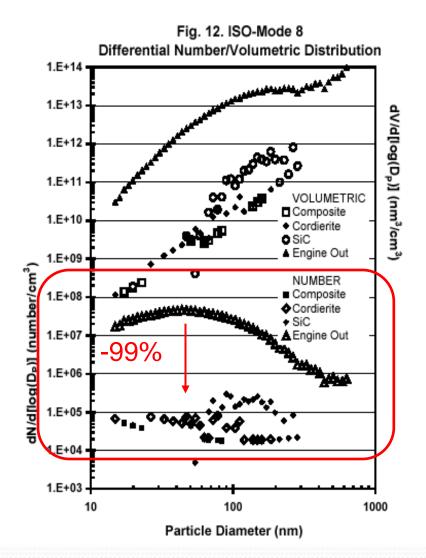
Advanced Gas technologies and stringent emission levels will reduce the Diesel vs. Gas fuel economy and CO2 gaps.

Source : Ford Motor Company

Low sulphur fuel benefits: Tailpipe emission reduction technology (non CO₂)


Cross section of a Particle Filter

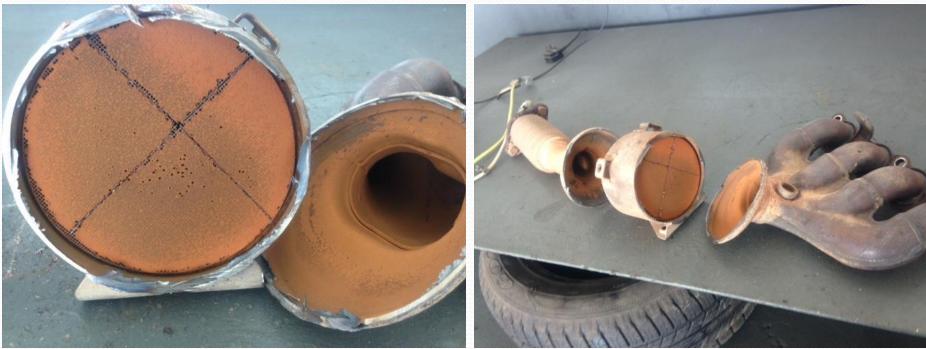
Clean exhaust gas


Exhausts from the engine

Images courtesy of AECC

50ppm Sulphur Diesel: Diesel Particulate Filter

How efficient is the filtration?


- Filtration efficiency between 95-99%
- Requires sub 50 ppm diesel
- Also to be applied to petrol vehicles

Diesel sulphur level : Service Interval implications

- 3000 ppm sulphur diesel resulted in service intervals of 5000 kms in SA unacceptable to many operators.
- 500 ppm diesel resulted in an increase to at least 10,000 km (in conjunction with lubricity specs) making diesel light vehicles more viable
- In South Africa diesel service intervals are now typically between 15,000 and 20,000 km with widespead availability of 50 ppm diesel
- Effect on service intervals was perhaps the most significant benefit of the sulphur reduction for SA manufacturers and importers
- Full alignment with European intervals will require further sulphur reductions in line with EU standards.

Metal additives in petrol

Recent issues in East Africa

ISSUE : Manganese being increasingly used at uncontrolled levels at a time when catalyst cell mesh density is increasing

Manganese related blockages of catalytic converters : Tanzania 2016

EU Mn limit – 2mg/l (with warning label)

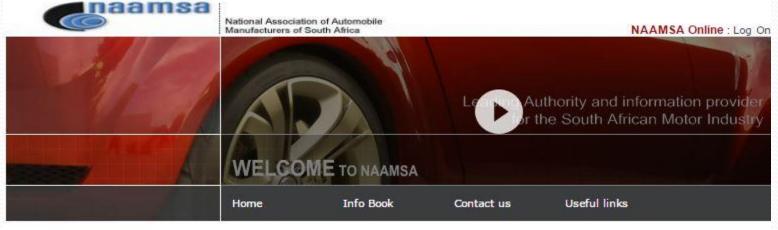
SA Government initiatives(1) Department of Energy • Energy Efficiency Strategy • Energy Efficiency Accord

Department of Energy: Energy Efficiency Strategy 2009: Objectives

- Targets to be met by 2015
- Industry and Mining 15% final energy demand reduction
- Power Generation 15% reduction in parasitic electrical usage
- Commercial and Public Sector Buildings 15% final energy demand reduction
- Residential sector 10% final energy demand reduction
- Transport sector 9% final energy demand reduction (achieved)

South Africa: New passenger car Fuel Economy/CO₂ label

FUEL CONSUMPTION


MORRIS MINOR 1200

Comparative fuel consumption
6.8 litres per 100km
Comparative CO ₂ emissions
159 grams per km

- Carbon dioxide (CO₂) is the main greenhouse gas responsible for global warming
- Actual fuel consumption and CO₂ emissions depend on factors such as traffic conditions, vehicle condition and haw you drive

NAAMSA Fuel Economy/CO₂ Database

COMPARATIVE PASSENGER CAR FUEL ECONOMY AND CO2 EMISSIONS DATA

Firstly, please select the MAKE of your vehicle.

Then select from the next dropdown box for the TYPE of your vehicle (eg FORD Focus).

Then click the SHOW MODELS button. Upon clicking this, your results will appear.

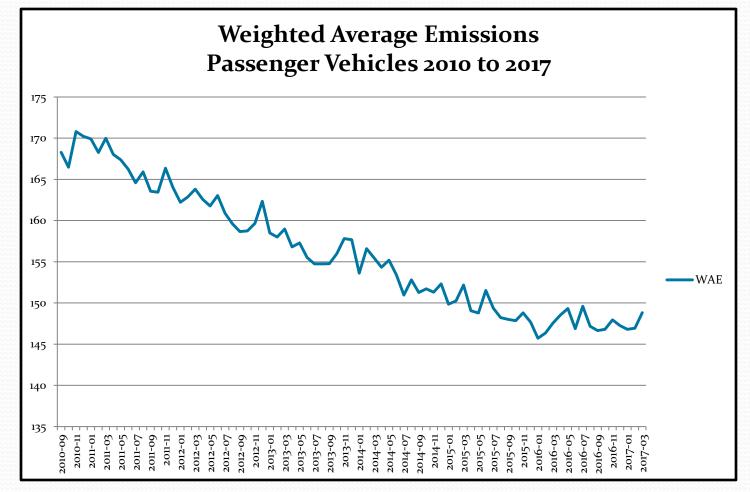
Make: FORD Type: FORD Fiesta								
Model	Body shape	Transmission	Fuel	CC	Consumption (I/100KM)	CO2 Emissions (g/KM)		
Fiesta 1.0 EcoBoost Ambiente 5-dr MY15 Powershift	Hatch (5-dr)	Elec	Petrol	1.0	4.9	114		
Fiesta 1.0 EcoBoost Ambiente 5-dr MY16	Hatch (5-dr)	Man	Petrol	1.0	4.3	99		
Fiesta 1.0 EcoBoost Titanium 5-dr MY13	Hatch (5-dr)	Man	Petrol	1.0	4.3	99		
Fiesta 1.0 EcoBoost Titanium 5-dr MY15 Powershift	Hatch (5-dr)	Elec	Petrol	1.0	4.9	114		
Fiesta 1.0 EcoBoost Trend 5-dr MY13 Powershift	Hatch (5-dr)	Elec	Petrol	1.0	4.9	114		
Fiesta 1.0 EcoBoost Trend ESP 5-dr MY16	Hatch (5-dr)	Man	Petrol	1.0	4.3	99		
Fiesta 1.4 Ambiente 5-dr MY14	Hatch (5-dr)	Man	Petrol	1.4	5.7	130		
Fiesta 1.5 TDCi Ambiente 5-dr Dsl MY16	Hatch (5-dr)	Man	Diesel	1.5	3.6	94		
Fiesta 1.5 TDCi Trend 5-dr Dsl MY16	Hatch (5-dr)	Man	Diesel	1.5	3.6	94		
Fiesta 1.6 ST 3-dr MY13	Hatch (3-dr)	Man	Petrol	1.6	5.9	138		
Fiesta 1.6 TDCi Trend 5-dr Dsl MY13	Hatch (5-dr)	Man	Diesel	1.6	3.6	95		

SA Government initiatives (2) National Treasury

- Environmental based taxation proposals: April 2006
- CO2 taxation: New passenger cars and D/Cab LCV's.

National Treasury Environmental Fiscal Reform Draft: Reforming existing tax

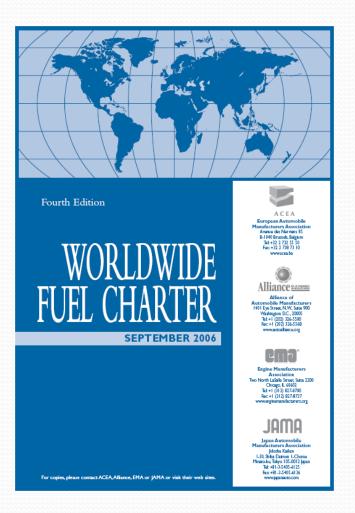
Table 7: Options for reforming existing environmentally-related taxes


Theme	Instrument	Incentive mechanism	Shortcomings and key		
			technical considerations		
Transport (National Government)	General fuel levy Vehicle	 Increases the price of transport fuels, thereby suppressing demand; Discourage vehicle use; Encourage the use of public transport / vehicle sharing; Encourage the development of fuel efficient technologies; and Could encourage the use of certain fuels over others. Increase the price of certain unbialse (huilding on the idea) 	 Not differentiable for time and location of infrastructure use; Relatively far removed from the main source of environmental externality; Complementary policies required to increase its effectiveness such as information campaigns; Potentially regressive. High information 		
	customs and excise duties	 vehicles (building on the idea of a luxury tax) thereby suppressing demand for passenger and light commercial vehicles; Encourage the use of public transport / vehicle sharing; Could encourage the use of selected types of vehicles / technologies through differential taxation. 	 requirements on vehicle types and technologies; Difficult to link tax to the time and frequency of infrastructure use (if desirable); 		
Transport (Provincial Government)	Vehicle licensing fees	 Increase vehicle ownership costs and therefore suppress vehicle demand; By altering the fee structure to include environmental criteria, appropriate incentives could be offered to vehicle users; Could be used to increase scrapping rate of older vehicles (i.e. differentiate fees according to the age of the vehicle). 	 The environmental incentive is likely to be small; Must avoid over-complication of fee structure; and Potentially regressive. 		

Final CO2 Standards and Taxation

- The rate of emissions tax on passenger vehicles is **R75*** per gram CO2 emissions in excess of 120 g/km based on test reports.
- The rate of emissions tax on double cabs is R100 per gram CO₂ emissions in excess of 175 g/km based on test reports.
- If **no test report** is available the CO₂ emissions will be calculated according to the following formula:
 - Passenger vehicles < 3000 cm^3 : $120 + (0.05 \text{ x cm}^3) = g/\text{km} \text{ CO}_2$
 - Passenger vehicles > 3000 cm^3 : $175 + (0.05 \text{ x cm}^3) = g/\text{km} \text{ CO}_2$
 - Double-cabs: $195 + (0.07 \text{ x cm}^3) = g/\text{km CO}_2$

* R100 per gram CO2 from April 2016


South Africa: Passenger car CO₂ emission data and trend

Key points

- Globally all developed markets have moved towards high fuel economy and low emission vehicle technology ,utilising progressively reduced sulphur level fuels.
- In the case of Southern Africa, the benefits of enabling fuel and legislated CO₂ standards and taxation was showing an approximate 1% pa CO₂ improvement for passenger cars until 2016. Further progress towards more fuel efficient technology, is subject to appropriate quality fuels becoming available.
- Comparison of typical 'developing market' spec vehicles with that of the EU indicates significant improvements in CO₂/fuel economy are possible, given the appropriate fuel quality.
- The South African Bureau of Standards petrol and diesel specifications (SANS 1598 & SANS 342) can be considered a practical compromise between local needs and EU standards, sufficient to support the introduction of the latest low emission vehicles into the region.

World-Wide Fuel Charter

- First established in 1998 to promote greater understanding of fuel quality needs of motor vehicle technologies and to harmonize fuel quality worldwide in accordance with vehicle needs
- This is the go-to document for fuel quality information.
- Covers both gasoline and diesel, with four levels of each for fuel quality based on emission requirements
- Biofuels covered by separate document
- Access from AutoAlliance.org
 - http://www.autoalliance.org/files/WWFC.pdf

Stuart Rayner National Association of Automobile Manufacturers of South Africa.