

Second Generation Biofuel Potential in India: Sustainability Considerations

Emmanuel Ackom, UNEP Risoe Centre, Denmark Pallav Purohit, Gunther Fischer, International Institute for Applied Systems Analysis, Austria Subash Dhar, UNEP Risoe Centre

> 8th Conference on Sustainable Development of Energy, Water and Environment Systems 24 September 2013 Dubrovnik, Croatia

Supported by:

Federal Ministry for the Environment, Nature Conservation and Nuclear Safety

based on a decision of the Parliament of the Federal Republic of Germany

Outline of presentation

- Definition, scope setting, background to biofuel sustainability discussions
- Rationale for the study & objectives
- Methodology
- Results & discussions
- Concluding recommendations

- Focused on Liquid biofuels
- IEA definition of Liquid Biofuels used in the study: Biofuels classified either as *conventional* or *advanced* based on level of maturity
- Conventional biofuel technologies= well established processes and biofuel being produced on commercial scale. Commonly referred to as 1st Generation. E.g. sugar based ethanol, starch based ethanol, oil crop based biodiesel and straight vegetable oil
- Advanced biofuel technologies = processes that are still in R&D, pilot or demonstration phase. Usually referred to as 2nd and 3rd Generation. Eg. biofuels from lignocellulosic biomass i.e. cellulose ethanol, biomass-to-liquids diesel, algae based biofuels.

Key sustainability concerns on biofuels

Social & Environmental

Key concerns on biofuels

Social:

Food vs. fuel

Other SOCIAL concerns (contd.)

UNEP RISØ centre

- Consultation & communication with local communities
- Biofuel production shall not take place on contested lands
- Compliance with national laws and ratified international laws on employment conditions and workers' rights
- Fair wages and compensations
- Workers are informed about their rights
- Working hours are not excessive
- Freedom of association and right to collective bargaining
- No child nor forced labour, health and safety concerns,
- etc

Major ENVIRONMENTAL concerns

- Net GHG balances
- Land use change (direct & indirect)
- Net energy balances
- Water (use and consumption)
- Biodiversity
- Soil quality & health
- Pollution (air, water, soil) responsible use of chemicals
- Etc

Sources: Hill et. al, 2006; Searchinger et. al, 2008; Williams et. al., 2009; Ackom et. al., 2010

Crude oil - India

- Volatilities in oil prices
- Uncertainties about sustained oil supplies
- Local energy security
- Rural development
- Diversification in agricultural and energy product streams

DTU

Rationale for the study

- National Policy:
 - biofuel blending targets in India

Year	Petrol demand (Mt)	Bioethanol demand (Mt)			
		5%	10%	20%	
2010	14.2	0.7			
2017	20.8		2.1		
>2017	31.1			6.2	

Source: Adapted from Purohit & Fischer, 2013

Research question:

How much of these mandated targets could be obtained from sustainably derived agricultural residue sources?

Year	Petrol demand (Mt)	Bioethanol demand (Mt)			
		5%	10%	20%	
2010	14.2	0.7			
2017	20.8		2.1		
>2017	31.1			6.2	

Methodology

- Using data collected in the collaborating institutions
- crop production statistics e.g. data from Government of India, Ministry of Agriculture; Kumar *et al.*, 2002; Ravindranath *et al.*, 2005; Purohit *et al.*, 2006, Purohit and Michaelowa, 2007; Purohit, 2009; Purohit & Fischer, 2013;
- estimation of residues and ethanol bioconversion using published peer reviewed data including: OECD/IEA, 2011; Simms *et. al.* 2010; Ackom *et. al.* 2013

Results & Discussions

Cereal crop production in year 2011

Intensity and spatial distribution of cereal production in 2010-11 (tons/km² (Source: Purohit and Fischer, 2013)

India:

2nd Gen biofuel potential from agricultural residues

Сгор	Residue type	Prod. (tonnes)	RPR	Res. (dry wt.)(tonnes)	Sustain. Res.(20%)	Biochem. EtoH-low(litre)	Biochem EtoH-high (litre)
Rice	Straw/husk	96.0E+06	1.8	173.0E+06	34.6E+06	3.8E+09	10.4E+09
Wheat	Straw	87.0E+06	1.6	139.0E+06	27.8E+06	3.1E+09	8.3E+09
Jawar	Stalk	7.0E+06	2.0	14.0E+06	2.8E+06	0.3E+09	0.8E+09
Surgar cane	Bagasse/leav es	342.0E+06	0.4	137.0E+06	27.4E+06	3.0E+09	8.2E+09
Bajra	Straw	10.40E+06	2.0	20.7E+06	4.1E+06	0.5E+09	1.2E+09
Maize	Stalk/cob	21.7E+06	2.5	54.3E+06	10.9E+06	1.2E+09	3.3E+09
Gram	Waste	8.2E+06	1.6	13.2E+06	2.6E+06	0.3E+09	0.8E+09
Tur (Arhar)	Shell/waste	2.9E+06	2.9	8.3E+06	1.7E+06	0.2E+09	0.5E+09
Other cereal	Stalk	4.6E+06	2.0	9.1E+06	1.8E+06	0.2E+09	0.5E+09
Total					136E+06	15.0E+09	41.0E+09

AND SUSTAINABLE

DEVELOPMENT

Summary of findings in addressing the research question

Year **Bioethanol demand** Petrol **EtoH** EtoH demand from from 5% 10% 20% (Mt) residues residues (low) (high) 15 bill. 41 bill. litres litres (Mt) Mtoe 14.2 2010 11.8 31.6 0.7 2017 20.8 2.1 6.2 >2017 31.1

Conclusions

 India's bioethanol blending targets could be met from environmentally benign 2nd generation sources derived from agricultural residues

- However, increased investments in R&D would be required in order to bring the technology to commercial scale for this bioethanol potential in 2-G to be realised.
- Partnerships with global players would be required.

Thanks for your attention ! Emmanuel Ackom email: <u>emac@dtu.dk</u>

www.unep.org

www.uneprisoe.org