

ENERGY, CLIMATE AND SUSTAINABLE DEVELOPMENT

Sustainable mobility and Passenger Transport

P.R. Shukla Indian Institute of Management Ahmedabad, India

Subash Dhar UNEP Risø Centre Roskilde, Denmark Supported by:

Federal Ministry for the Environment, Nature Conservation and Nuclear Safety

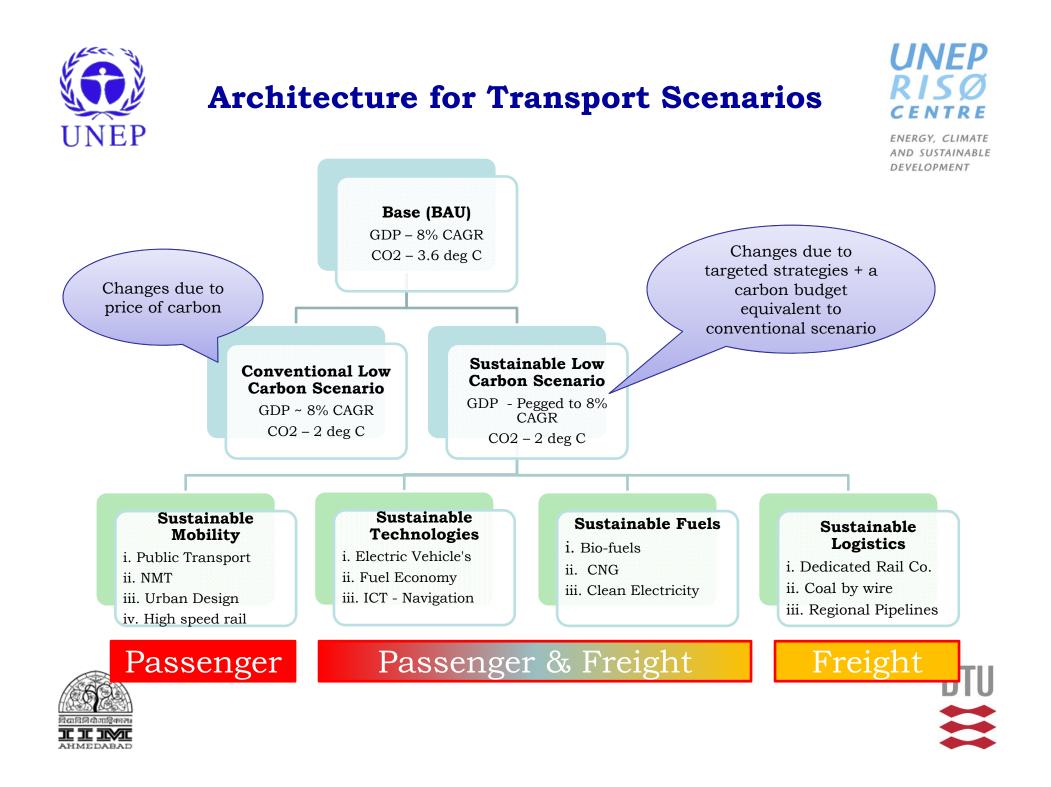
based on a decision of the Parliament of the Federal Republic of Germany

Workshop on Developing Policies and strategies for Low-Carbon Transport in India 24 August, 2012 Delhi

Overview

ENERGY, CLIMATE AND SUSTAINABLE DEVELOPMENT

1. Scenario Architecture


2. Scenario Storylines

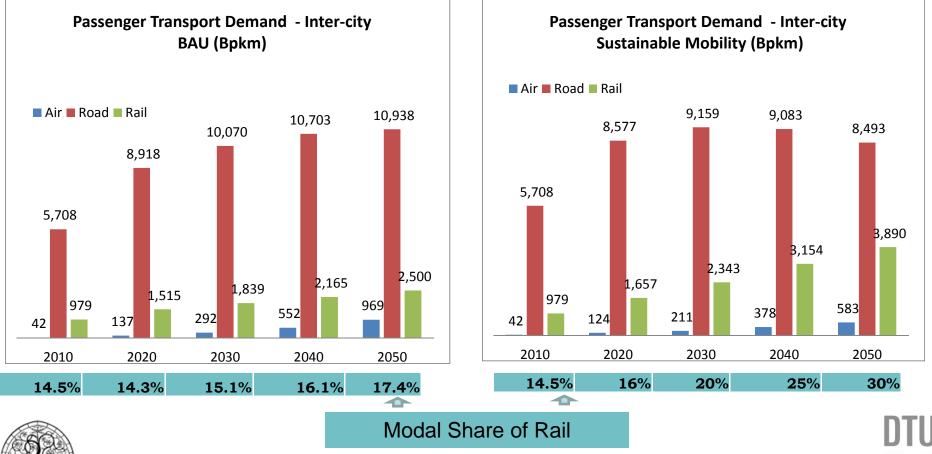
3. Analysis

4. Conclusions

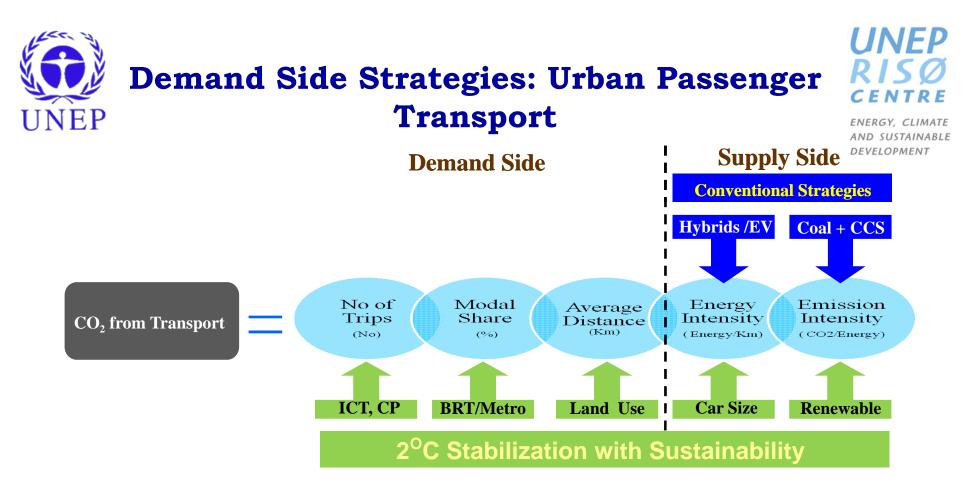
Scenarios: Intercity

ENERGY, CLIMATE AND SUSTAINABLE DEVELOPMENT

- **BAU Scenario** Modal Shift to Rail by improving attractiveness of existing rail corridors is the policy objective, achieved by varied interventions, e.g.;
 - i. <u>By increasing travel speeds</u> to enable maximum speed of 160-200 km/hr.
 - ii. <u>Introducing High Speed</u> <u>Train Corridors</u> on select corridors
 - iii. <u>By improving coach</u> <u>services</u> – through better amenities
 - **iv. Constraints** Financial and revenue rationalisation constraints


- Sustainable Mobility A major shift towards rail for intercity transport is realised due to <u>relaxing financial constraints</u> which enable
 - i. <u>Adequate investments for</u> <u>improving attractiveness of</u> <u>rail</u> through incremental approaches (speed and quality of services)
 - ii. <u>Creation of High Speed</u> <u>Corridors (Max. Speed > 300</u> <u>km/hr) beyond current</u> <u>proposals leading to</u> increase in share of Rail from 14.5% in 2010 to <u>30% in 2050.</u>

(Overall travel demand for intercity travel kept unchanged)



- Number of Trips Reduce through
 - ICT –Information & Communication Technology
 - CP Car pooling
- Average Distance or Trip lengths Reduce through
 - Urban Planning
- Modal Shift Urban
 - Investing in <u>public transport</u> infrastructures within cities e.g., BRT, Buses and Metros
 - Investing in <u>NMT</u> infrastructures
 - Urban Planning which facilitates NMT and Public transport

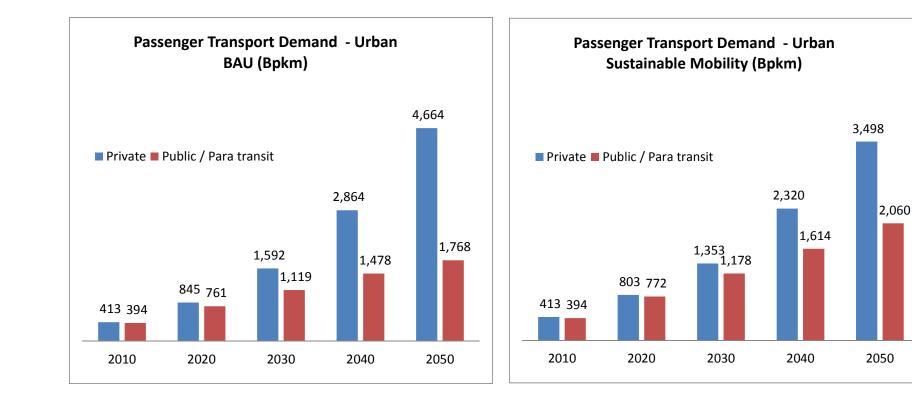
Scenario: Intra City

ENERGY, CLIMATE AND SUSTAINABLE DEVELOPMENT

BAU Scenario – Sustainable mobility within cities by creating better infrastructures for public transport through

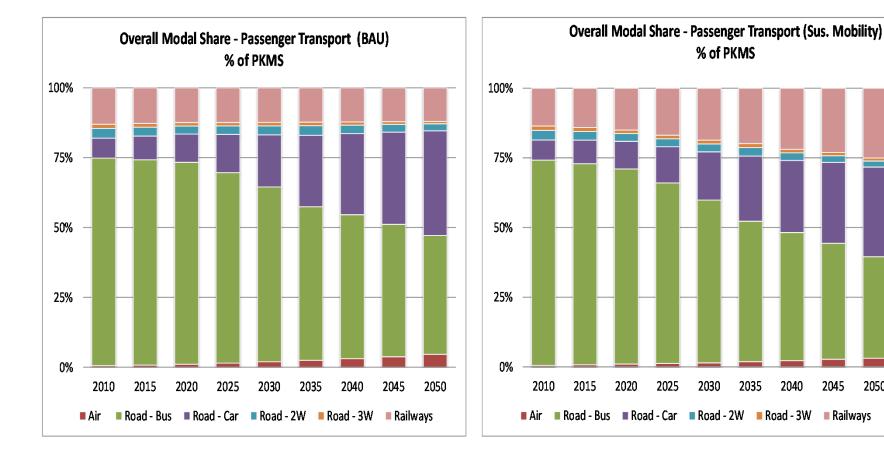
- i. <u>By better urban planning for</u> <u>transport</u>
- **ii.** <u>Metros:</u> All 2 million plus cities to have metros.
- **iii.** <u>By improving bus services</u> and developing bus rapid transit systems
- **iv. Constraints** Financial and implementation constraints at city level means there will be a limited success and in the long run we will see a greater role for private transport

- **Sustainable Mobility** A major shift towards public transport through
 - i. <u>Reforms at city level</u> which ensure that cities have the financial resources and institutional capacities
 - ii. By internalising transport planning
 - **iii.** Faster rollout of Metros and BRT <u>systems</u> Planning and implementation at a faster pace to prevent lock ins .
 - iv. <u>By improving bus services</u> for safety and security and making public transport inclusive for women, disabled, old and children.
 - **v. Transit leverage** concept applied as a result for every 1 pkm shift to public transport demand for private transport reduced by 4 pkm.



UNEP RISØ CENTRE

ENERGY, CLIMATE AND SUSTAINABLE DEVELOPMENT



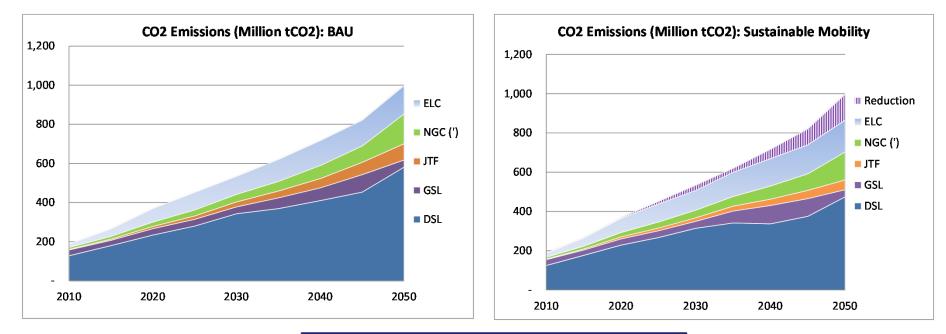
Overall Modal Shares

ENERGY, CLIMATE AND SUSTAINABLE DEVELOPMENT

2050

ENERGY, CLIMATE AND SUSTAINABLE DEVELOPMENT

Analysis



CO2 Emissions: Transport

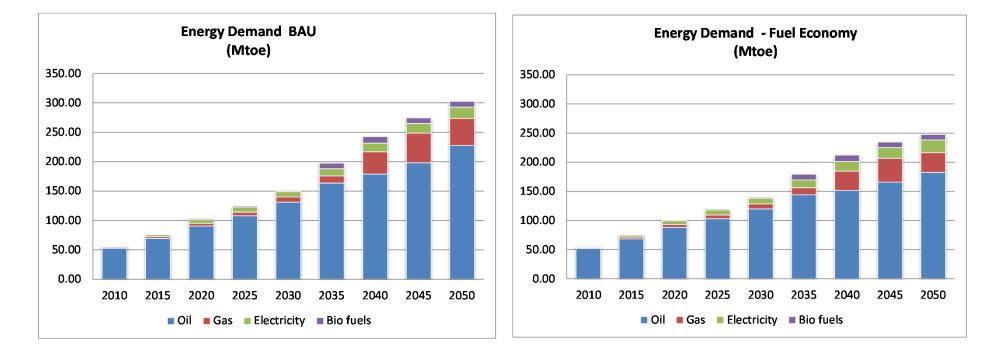
ENERGY, CLIMATE AND SUSTAINABLE DEVELOPMENT

DTU

(*) Natural Gas emissions include both emissions from energy and fugitive emissions

Emission Intensity of Grid

(Million tCO2/GWh)

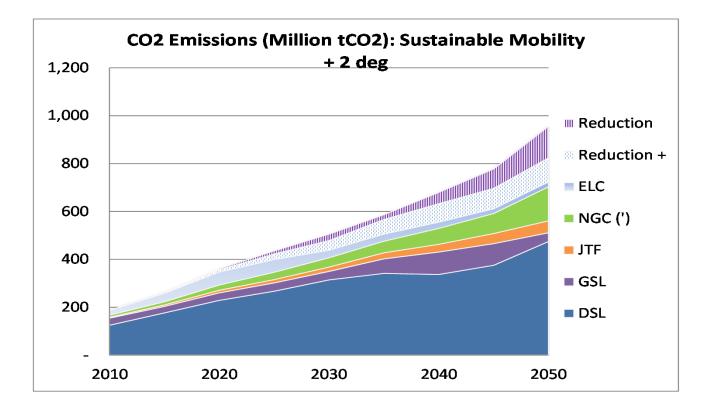

Scenario	2010	2020	2030	2040	2050
Base Case	0.99	0.94	0.86	0.74	0.69

UNEP RISØ CENTRE

ENERGY, CLIMATE AND SUSTAINABLE DEVELOPMENT

Energy Savings

- In 2020 Oil demand less by 2.6% and by 2050 by 19.9%
- Electricity demand is however higher by 11.9% by 2050



CO2 Reduction: Sustainable Mobility

UNEP RISØ CENTRE

ENERGY, CLIMATE AND SUSTAINABLE DEVELOPMENT

DTU

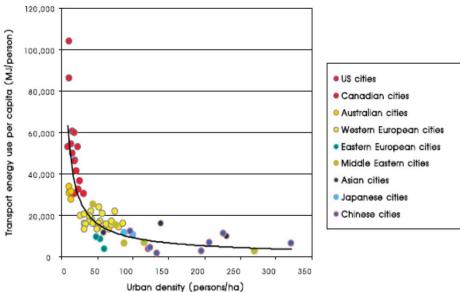
Emission Intensity of Grid (Million tCO2/GWh)

Scenario	2010	2020	2030	2040	2050
2 deg C Stabilization	0.99	0.73	0.34	0.19	0.11
BAU	0.99	0.94	0.86	0.74	0.69

Guidebook on Transport Technologies

ENERGY, CLIMATE AND SUSTAINABLE DEVELOPMENT

TNA Guidebook Series



Technologies for Climate Change Mitigation

- Transport Sector -

Urban density Vs Private Passenger Car Travel

http://tech-action.org/Guidebooks/TNA_Guidebook_MitigationTransport.pdf

Snapshots of Technology Data

ENERGY, CLIMATE AND SUSTAINABLE DEVELOPMENT

Transport Mode (fuel)	Measured Average Vehicle Efficiency (MJ/km)	Measured Average Vehicle Occupancy (passengers)	Average Fuel Efficiency: MJ/ pass km	CO ₂ (eq): g/ pass-km
	X	Y	A = X/Y	= A x Emission co-efficient
Car (Petrol)	4.51	1.48	3.05	219.6
Bus (Diesel)	20.89	12.74	1.64	118.1
Heavy Rail (electric)	13.62	30.96	0.44	2.6 - 182.2
Heavy Rail (diesel)	40.23	27.97	1.44	103.7
Light Rail/Tram (electric)	20.62	26.06	0.79	4.7 - 327.1

Table 2.2: Conversion of energy to CO₂ (eq) for each mode in a study of 46 global cities

Table 2.5: Greenhouse gas emissions from transport per capita in high income cities

Greenhouse Indicators	Unit	USA	ANZ	CAN	WEU	HIA
Total passenger transport CO ₂ emissions per capita	kg/ person	4,405	2,226	2,422	1,269	825
Total private transport CO ₂ emissions per capita	kg/ person	4,322	2,107	2,348	1,133	688
Total public transport CO ₂ emissions per capita	kg/ person	83	119	74	134	162
Percentage of total passenger transport CO ₂ emissions from public transport	%	1.9	5.3	3.1	10.6	19.7

Conclusions

ENERGY, CLIMATE AND SUSTAINABLE DEVELOPMENT

- 1. Sustainable Mobility strategy will require major changes in infrastructures and urban design.
- 2. Sustainable mobility strategy can deliver reductions in CO_2 emissions, but would fall short of what is needed for efficient response to achieve $2^{O}C$ global climate stabilization target.
- 3. Sustainable low carbon mobility would require alteration in fuel mix, especially clean electricity supply.
- 4. A portfolio of options is needed to achieve low carbon mobility transformation in India.

ENERGY, CLIMATE AND SUSTAINABLE DEVELOPMENT

Thank You

Questions / Suggestions

