

Alternative Scenarios with logistic grids

Subash Dhar UNEP Risø Centre Roskilde, Denmark

P.R. Shukla Indian Institute of Management Ahmedabad, India

Supported by:

Federal Ministry for the Environment, Nature Conservation and Nuclear Safety

based on a decision of the Parliament of the Federal Republic of Germany

Workshop on Developing Policies and strategies for Low Carbon Transport in India 24 August, 2012 New Delhi

- 1. Scenario Architecture
- 2. Scenario storylines
 - a. Coal by wire
 - b. Regional Pipelines
 - c. Dedicated Freight Corridors
- 3. Analysis
- 4. Conclusions

Demand Side Strategies

- Freight demand Reduce through e.g.,
 - Coal by Wire : Reducing coal transportation
 - Regional Pipeline : Reducing gas transportation through LNG mode
- Modal Shift
 - Road to Rail: By improving efficiency of railways e.g., Dedicated Rail Freight Corridor
 - Rail to Pipelines

Coal freight transport

ENERGY, CLIMATE AND SUSTAINABLE DEVELOPMENT

 Coal transportation accounts for <u>43% of rail</u> <u>freight</u>

Coal Reserves and Rail Infrastructures

Electricity Generation and Consumption

Scenario Storylines

ENERGY, CLIMATE AND SUSTAINABLE DEVELOPMENT

BAU Storyline : Active role of State Electricity utilities in power generation.

- Central policy is driven by setting up of large **coal power plants at pit heads and at coastal locations**.
- States capacities located closer to demand.

Coal by Wire: Strong role of central policy in grid creation and generation

- **<u>80% of coal based capacity</u>** at pit head or at coast by 2050.
- Rail based transportation would therefore be limited to only 20% of coal demand in 2050.

Coal by Wire Scenario

Dedicated Rail Freight Corridor (DFC)

- By 2046 DFC's expected to transport 2712 btkm (RITES, 2009)
- 47% of Projected Freight Demand will move on DFC's

Scenario Storylines

ENERGY, CLIMATE AND SUSTAINABLE DEVELOPMENT

• BAU Storylines

- Slower rollout of DFC and slow pace in creating interconnecting infrastructures
- By 2050 only 33% of traffic projections made by RITES study realised

DFC Scenario Major modal shift from road to rail due to

- <u>Complete achievement</u> of projections in the RITES, 2009 study. As a result a.
- Faster electrification of railways

Logistic Grid – Modal Shares

ENERGY, CLIMATE AND SUSTAINABLE DEVELOPMENT

VFD

Overall Freight Demand	
2010 – 1771 btkm	CAGR 2010-50 = 3.6%
2050 - 7341 btkm	

Overall Freight Demand 2010 – 1771 btkm CAGR 2010-50 = 3.3% 2050 – 6558 btkm

ENERGY, CLIMATE AND SUSTAINABLE

• BAU Storyline

EP

- No regional pipelines

• Regional Cooperation

3 regional pipelines which can bring 45
bcm of gas closer to
markets

Assessment

Energy Demand Freight

ENERGY, CLIMATE AND SUSTAINABLE DEVELOPMENT

• <u>Overall demand</u> for energy from freight decreases due to sustainable logistics lower by <u>3.3% in 2020</u> and by <u>25.1% in 2050</u>

• Despite a lower share in demand the share of energy for road transport is higher

CO2 Emissions transport

ENERGY, CLIMATE AND SUSTAINABLE DEVELOPMENT

(*) Natural Gas emissions include both emissions from energy and fugitive emissions

Emission Intensity of Grid (Million tCO2/GWb)

Scenario	2010	2020	2030	2040	2050
Base Case	0.99	0.94	0.86	0.74	0.69
		-			-

CO2 Reduction: Logistic Grid

ENERGY, CLIMATE AND SUSTAINABLE DEVELOPMENT

DTU

Emission Intensity of Grid (Million tCO2/GWh)

Scenario	2010	2020	2030	2040	2050
2 deg C Stabilization	0.99	0.73	0.34	0.19	0.11
BAU	0.99	0.94	0.86	0.74	0.69

- Location decisions for industries which consume or produce materials with large demand for logistics essential for reducing freight demand (e.g., Coal based power plants)
- **2.** <u>**Railways**</u> can play a major part in reducing CO2 emissions from freight. The contribution can be much higher if electricity is cleaned.
- **3.** <u>**Regional gas pipelines**</u> can deliver reductions in GHG emissions by lowering fugitive emissions.

Thank You

Questions / Suggestions

