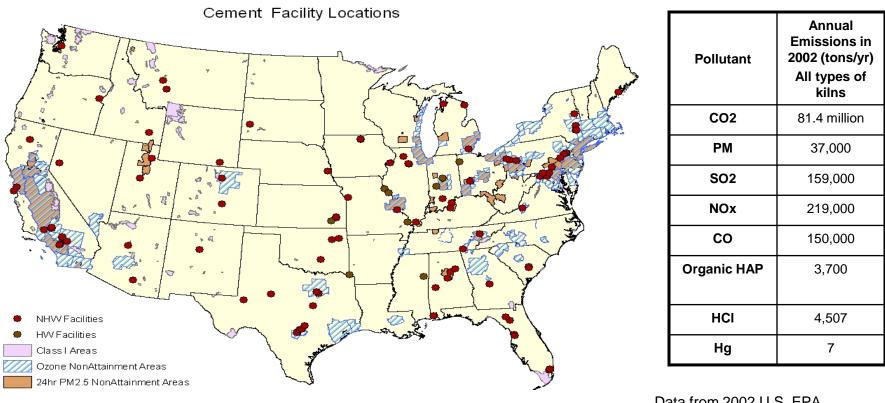


# Final Portland Cement Rule 2013

June 18, 2013

Keith Barnett Office of Air Quality Planning and Standards Sectors Policies and Programs Division Minerals and Manufacturing Group




### Overview

- Industry Background
- Emission Limits
- Control Technologies
- Expected Emission Reductions
- Mercury Emission Causes
- Development of Mercury Standard
- Questions



### **Industry Background**

**2009:** 107 Facilities (77 major, 16 area, 14 hazardous waste) comprised of 170 kilns (147 non-hazardous waste kilns) **Projected growth:** 6 new kilns by 2013



Source: EPA 2002-2006 Data

Data from 2002 U.S. EPA National Emissions Inventory



### **MACT Standard**

- MACT for new sources must be at least as stringent as the emission reduction achieved by the best performing similar source
- Existing source MACT standards must be at least as stringent as the emission reductions achieved by the average of the top 12 percent best controlled sources
- Setting a MACT standard is a two step process:
  - The "MACT floor" is established based on what is currently achieved by sources – costs may not be considered
  - EPA may regulate "beyond the floor" where justified costs and other issues must be considered
- In Portland cement rule, only four standards were considered hydrogen chloride (HCI), mercury, particulate matter (PM) and total hydrocarbon (THC)
- Eight years after we set MACT standards, we must review the standards for remaining risk and changes in technology



# United States Environmental Protection Agency Existing Cement Kilns Emission Limits

| Pollutant                               | Cement Kilns Burning<br>Traditional Fuels               | Cement Kilns Burning<br>Non-Hazardous Waste                | Cement Kilns Burning<br>Hazardous Waste                                                            |
|-----------------------------------------|---------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Mercury                                 | 55 lb/MM tons clinker (~ 0.010<br>mg/dscm) (30 day avg) | 0.011 mg/dscm                                              | 0.12 mg/dscm (with an<br>additional limit on the<br>concentration of Hg in the<br>hazardous waste) |
| THC ( surrogate for<br>Organic HAP)     | 24 ppmv for all kilns<br>(30 day average)               |                                                            | 20 ppmv (hourly rolling avg) or 10 ppmv in a bypass duct                                           |
| PM (surrogate for nonmercury metal HAP) | 0.07 lb/ton clinker via PCMS compliance                 | 4.6 mg/dscm                                                | 64 mg/dscm                                                                                         |
| HCI                                     | 3 ppmv                                                  | 3.0 ppmv                                                   | 120 ppmv (includes Cl <sub>2</sub> )                                                               |
| SO <sub>2</sub>                         | If source has a modification:                           | 600 ppmv                                                   |                                                                                                    |
| NO <sub>X</sub>                         | If source has a modification:                           | 630 ppmv                                                   |                                                                                                    |
| СО                                      |                                                         | 110 ppmv (long kilns)/ 790<br>ppmv (preheater/precalciner) | 100 ppmv (hourly rolling avg)                                                                      |
| Pb                                      |                                                         | 0.014 mg/dscm                                              | 0.18 mg/dscm (combined                                                                             |
| Cd                                      |                                                         | 0.0014 mg/dscm                                             | limit for Pb + Cd)                                                                                 |
| Dioxins, Furans, total                  |                                                         | 1.3 ng/dscm                                                | 0.054 mg/dscm                                                                                      |
| Dioxins, Furans, TEQ                    | 0.2 ng TEQ/dscm                                         | 0.075 ng TEQ/dscm                                          | 0.2 ng TEQ/dscm                                                                                    |



## New Cement Kilns Emission Limits

| Pollutant                               | Cement Kilns Burning<br>Traditional Fuels | Cement Kilns Burning<br>Non-Hazardous Waste               | Cement Kilns Burning<br>Hazardous Waste                                                            |
|-----------------------------------------|-------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Mercury                                 | 21 lb/MM tons feed<br>(30 day average)    | 0.0037 mg/dscm                                            | 0.12 mg/dscm (with an<br>additional limit on the<br>concentration of Hg in the<br>hazardous waste) |
| THC ( surrogate for Organic HAP)        | 24 ppmv for all kilns<br>(30 day average) |                                                           | 20 ppmv (hourly rolling avg) or<br>10 ppmv in a bypass duct                                        |
| PM (surrogate for nonmercury metal HAP) | 0.02 lb/ton clinker via PCMS compliance   | 2.2 mg/dscm                                               | 16 mg/dscm                                                                                         |
| HCI                                     | 3 ppmv                                    | 3.0 ppmv                                                  | 86 ppmv (includes Cl <sub>2</sub> )                                                                |
| SO <sub>2</sub>                         | 0.4 lb/ton clinker                        | 28 ppmv                                                   |                                                                                                    |
| NO <sub>X</sub>                         | 1.50 lb/ton clinker                       | 200 ppmv                                                  |                                                                                                    |
| СО                                      |                                           | 90 ppmv (long kilns)/ 190<br>ppmv (preheater/precalciner) | 100 ppmv (hourly rolling avg)                                                                      |
| Pb                                      |                                           | 0.014 mg/dscm                                             | 0.33 mg/dscm (combined                                                                             |
| Cd                                      |                                           | 0.0014 mg/dscm                                            | limit for Pb + Cd)                                                                                 |
| Dioxins, Furans, total                  |                                           | 0.51 ng/dscm                                              | 0.056 mg/dscm                                                                                      |
| Dioxins, Furans, TEQ                    | 0.2 ng TEQ/dscm                           | 0.075 ng TEQ/dscm                                         | 0.2 ng TEQ/dscm                                                                                    |



### **Control Technologies**

| Control Type                                  | Pollutants                                | Maximum Estimated<br>Control Efficiency                  | Number of projected<br>installations <sub>c</sub> |
|-----------------------------------------------|-------------------------------------------|----------------------------------------------------------|---------------------------------------------------|
| Lime Injection                                | HCI                                       | 70 %                                                     | 2                                                 |
| Limestone Wet Scrubber                        | Mercury<br>HCl<br>SO <sub>2</sub>         | Mercury – 80 %<br>HCl – 99.9 %<br>SO <sub>2</sub> – 90 % | 59-117                                            |
| Activated Carbon Injection <sup>a</sup>       | Mercury<br>THC/Organic HAP                | Mercury – 90 %<br>Organic HAP – 80 %                     | 71-153                                            |
| Regenerative Thermal<br>Oxidizer <sup>b</sup> | THC                                       | 98 %                                                     | 10-21                                             |
| Membrane Bags added to existing fabric filter | PM and HAP metals                         | >99.9 %                                                  | 6-28                                              |
| Fabric Filter                                 | PM and HAP metals                         | >99.9 %                                                  | 0-2                                               |
| Selective NonCatalytic<br>Reduction           | NOx                                       | 50-60 %                                                  | 7                                                 |
| Selective Catalytic Reduction                 | NOx, but expect Dioxin,<br>THC cobenefits | 70-90 %                                                  | 1 under construction (Joppa,<br>Illinois)         |

<sup>a</sup> Includes a second fabric filter for carbon capture

<sup>b</sup> May require a wet scrubber upstream for acid gas removal

<sup>c</sup> Based on an estimated population of about 153 kilns. This includes kilns burning nonhazardous waste but not kilns burning hazardous waste. Many kilns may require multiple controls 7



#### **Cement Kilns Burning Traditional Fuels**

|                      | Mercury (lb/yr) | HCl (tons/yr) | PM (tons/yr) | THC (tons/yr) |
|----------------------|-----------------|---------------|--------------|---------------|
| Baseline Emissions   | 13,912          | 3,697         | 9,267        | 9,395         |
| Reductions from Rule | 12,909          | 3,541         | 8411         | 7,731         |
| Percent Reductions   | 93              | 96            | 91           | 82            |



# **Mercury Emission Causes**

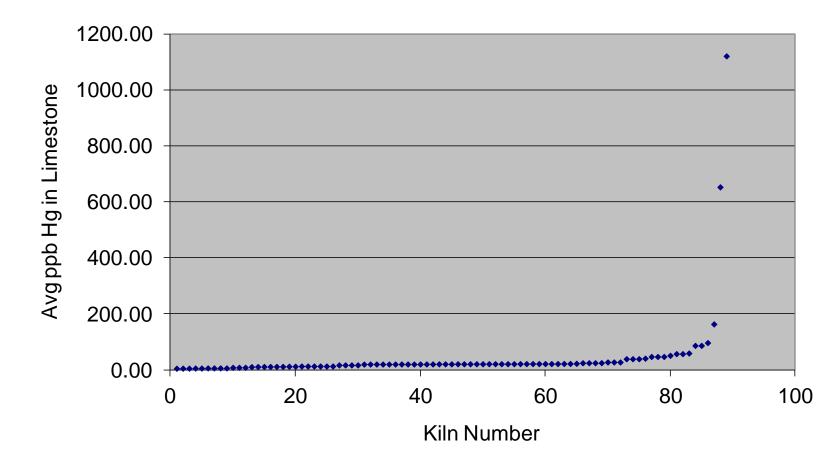
- Mercury emissions from a Portland cement plant come from the cement kiln
- Mercury is present in trace quantities (typically parts per billion) in the raw materials and fuels
- The mercury volatizes in the kiln and is emitted mainly as a gas
- Little or no mercury leaves the kiln as part of the clinker
- Some mercury condenses on the particulate and is captured in the kiln PM control
  - The material captured in the PM control is typically returned to the kiln and the mercury is reemitted as a result



## Data Gathering

- ► In 2007 EPA obtained the following information for 89 kilns:
  - ▶ 30 days of mercury concentration data for all kiln fuel and raw materials
  - Annual or daily fuel and raw material use
  - ► 30 days of mercury concentration data for cement kiln dust
  - All mercury emission tests
  - Information on kiln capacity, design and air emissions controls for PM, SO<sub>2</sub> and NOx
- Most kilns in the United States had no mercury controls at that time
  - Five kilns had limestone wet scrubbers to remove mercury in addition to SO<sub>2</sub>
  - One kiln had pilot-tested activated carbon injection (ACI) and was installing a full scale system
  - Some kilns waste cement kiln dust to control chloride content of the clinker
- Performed inlet/outlet mercury testing on five limestone scrubbers installed for SO<sub>2</sub> control
  - Test results showed the scrubbers removed up to 80 percent of the total mercury




# **Results of Mercury Emission Analysis**

- Results of the 89 kilns in our survey
  - Total mercury inputs (89 kilns) were 11,490 lbs/yr
  - Total mercury emissions (89 kilns) were 10,360 lb/yr
- The limestone feed is the largest single source of mercury on a mass basis
- However, limestone feed represents approximately 75 percent of the total mass input to the kiln but contributes only 46 percent of the mercury input
- On a per unit basis, the additives (non-limestone raw materials) and fuels can be important
- The normalized emission rates range from 2 to 300 lb mercury per million tons of feed. The average is 70 and the median is 55
- The mass emission rates per kiln range from less than one pound to 345 lb per year, with an average of 65 and a median of 40
- There are two kilns that have significantly elevated emission rates (1700 and 2900 lb/year) compared to all other kilns. The elevated emissions are due to a specific high mercury rock formation in the western United States



### **Limestone Mercury Contents**

#### Average Mercury Content of Limestone





- The kiln mercury input data were used to develop long term mercury emission profiles, assuming mercury emissions equal mercury inputs (unless the kiln had mercury controls)
- In developing the limit, EPA accounted for the inherent variability of the mercury content of raw materials
- Other than emission testing limestone wet scrubbers, we did not perform any research on mercury controls
- We also obtained information on the performance of a full scale ACI system and dust shuttling
  - ► The ACI system reached mercury removal levels as high as 95 percent
  - At one site dust shuttling reduced raw mill off mercury emissions from ~400 ug/dscm to ~ 20 ug/dscm
- The current standard includes a requirement for continuous mercury emissions monitoring
  - Our data indicate that short term tests may not accurately predict long term emissions – especially if the kiln has an inline raw mill



- US EPA air regulations and technical information for cement industry: <u>http://www.epa.gov/airquality/cement/</u>
- Fact sheet for most recent rule actions: <u>http://www.epa.gov/airquality/cement/pdfs/20121220\_port\_cement\_fin\_fs.pdf</u>
- Full Text of Portland Cement regulations for Mercury: <u>http://www.ecfr.gov/cgi-bin/text-</u> <u>idx?c=ecfr&SID=29de26dfc6edc2f3b162d26974a89f27&rgn=div6&vi</u> <u>ew=text&node=40:12.0.1.1.1.8&idno=40</u>