

Capacity building for PCB analysis around the world

Jacob de Boer, Heidi Fiedler

Background

- Stockholm Convention on POPs requires a 'Global Monitoring Plan' (GMP) for <u>'Effectiveness evaluation</u>'
- To be effective, monitoring data should "confirm a <u>50%</u>
 <u>decline</u> in the levels of POPs within a 10 year period"
- POPs laboratories must be capable at any time to analyse samples for POPs within a margin of ±25%;
- POPs: <u>PCBs</u>, dioxins, OCPs, BFRs, PFASs

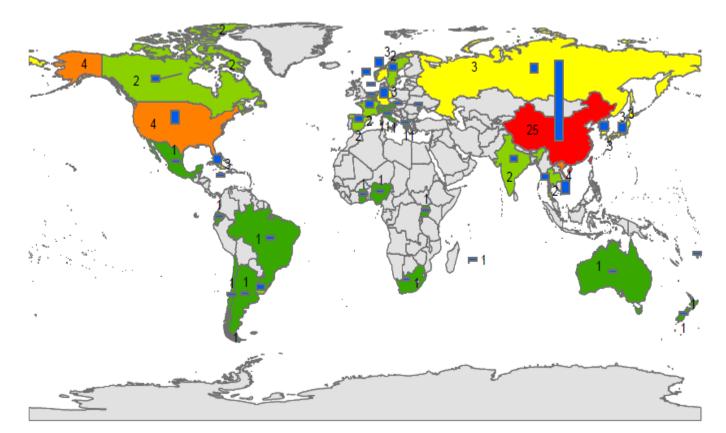
Capacity Building

- Interlaboratory studies
- Training on-site and in reference labs
- Procurement
- Mirror analysis
- Protocols
- Professional instruction movies
- Technical advice

Activities: overview

Training

- On-site training: <u>needs-oriented</u>
- Mirror analyses: your choice
- Advise on consumables
- Background information, literature


Interlab Participation

	1 st Round	2 nd Round	3 rd Round
Subscription	103	106	175
Reported results	83	89	140
Results for PCBs	42	47	50
Countries	49	46	54

2nd ILS: Laboratories registered

CEE: Central and Eastern
European
GRULAC: Group of Latin
American and Caribbean
Countries
WEOG: Western European

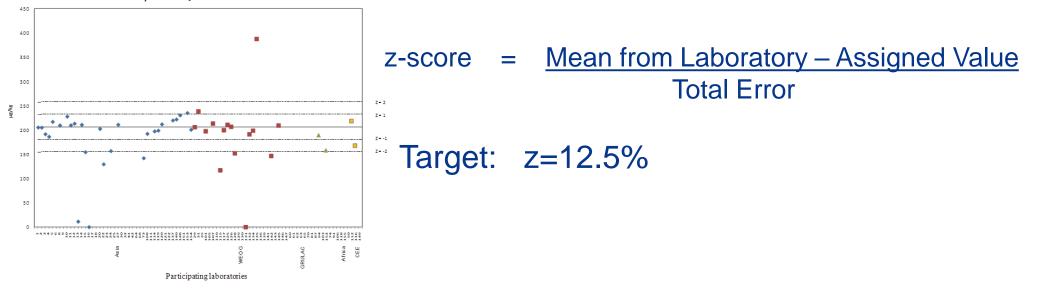
and Other Groups

Region	Africa	Asia	CEE	GRULAC	WEOG	Total
No of Countries registered	9	9	2	10	16	46
No of Labs registered	12	45	4	14	31	106
No of Labs with results	5	42	4	11	27	89

Test Materials Interlab Studies

Testmaterial 1 st Round	Test material 2 nd Round	Test material 3 rd Round
Standard Solution 6 indicator PCBs (28, 52, 101, 138, 153, 180), 1-10 μg/kg	Standard Solution 6 indicator PCBs (28, 52, 101, 138, 153, 180), 1-10 μg/kg	Standard Solution 6 indicator PCBs (28, 52, 101, 138, 153, 180), 1-10 μg/kg
Marine Sediment, North Sea (dry)	Marine Sediment, North Sea (dry)	Sediment, river Elb, Germany (dry)
Lake Trout (USA)	Pike perch fillet (NL)	Chinese mitten crab (NL)
Human Milk (S)	Human milk (S)	Human milk (S)
Fly ash (S)	Air, PUF extract waste incinerator, Sweden	Air, PUF extract, Barcelona (E)
	Transformer oil diluted Aroclor 1254 in toluene	

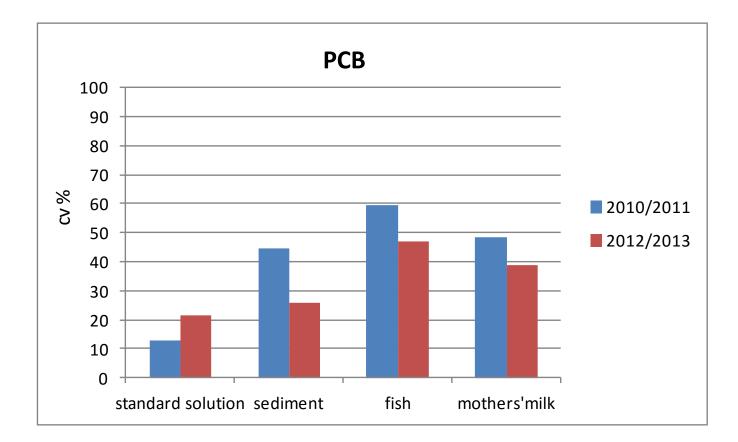
Participation Degree 2nd Round


Group	Standard solutions	Sedi- ment	Fish	Human milk	Air	Water	Human serum	Transfor- mer oil
ОСР	50	27	36	21	23	-	-	-
РСВ	47	38	43	28	25	-	-	19
dl-POPs	48	34	41	29	37	-	-	-
PBDE	42	30	34	19	21	-	-	-
PFAS	22	18	19	8	8	30	8	-

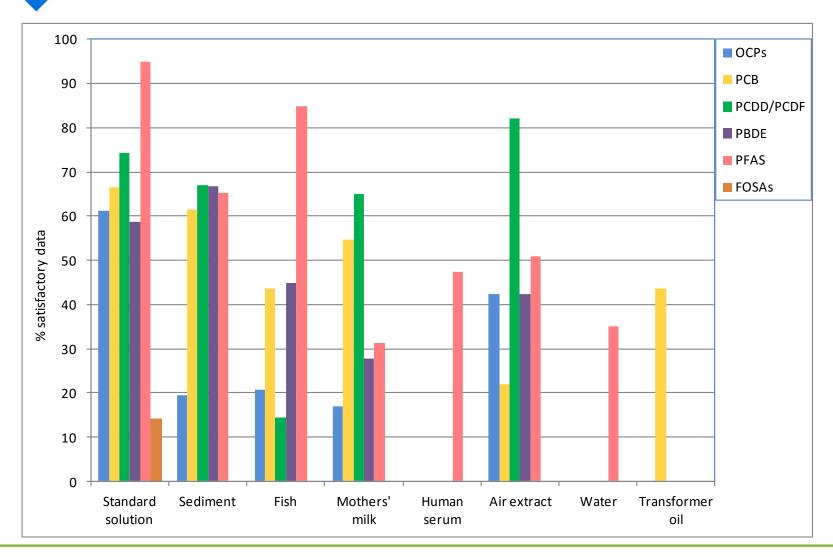
106 labs subscribed, 89 delivered data

Assessment

PCDD/PCDF TEQ in Standard Solution


z-scores can be interpreted as follows:|z|< 2</td>SatisfactoryS2<|z|< 3</td>QuestionableQ|z|>3UnsatisfactoryU

Test material	Compound Class	n	Between-Lab CV (%)
Standard solution	OCPs	22-51	8-25
	PCBs	40-41	12-19
	Dioxins, Furans, dl-PCBs	31-37	6-12
Lake trout	OCPs	10-34	40-240
	PCBs	30-34	48-113
	Dioxins, Furans, dl-PCBs	13-23	21-135
Sediment	OCPs	3-38	14-451
	PCBs	25-31	31-59
	Dioxins, Furans, dl-PCBs	19-28	11-98
Human milk	OCPs	4-20	31-332
	PCBs	18-24	26-117
	Dioxins, Furans, dl-PCBs	6-21	52-76
Fly ash	PCBs	10-12	25-191
	Dioxins, Furans, dl-PCBs	20-27	13-80

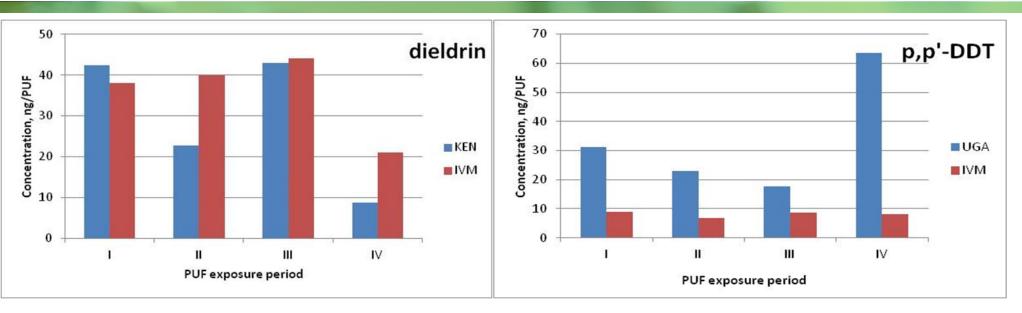


■1st Round

First vs. Second Interlab, PCBs

Percentage satisfactory z-scores, Round 2

Performance of laboratories – z-scores



POP	OCPs		PCB(6)		dl	dl-POPs		PBDE+PBB			PFAS				
# z-	2,603			1,427		5	5,018		1,170			435			
scores						10,653									
	S	Q	U	S	Q	U	S	Q	U	S	Q	U	S	Q	U
No	1,495	281	827	787	177	463	<mark>3,804</mark>	484	730	646	222	302	377	19	39
%	57%	11%	32%	55%	12%	32%	76%	<mark>10%</mark>	15%	55%	19%	26%	87%	4%	9%

Semi-quantitative results:

- Highest number of satisfactory results for dl-POPs (3,804); followed by OCPs (1,495)
- Highest number of unsatisfactory results for OCPs (827)
- Highest percentage of satisfactory results for PFAS (87%);followed by dl-POPs (76%)
- Highest percentage of unsatisfactory results for OCPs and PCB(6) (32%)

Mirror analyses in African countries

KEN

■IVM

On-SiteTraining - Observations

- Lack of consumables (glassware, syringes, chemicals, etc.)
- **Bureaucracy** is hindering processes in laboratories
- Laboratories need to build up routine
- **Training** is needed for understanding basic principles of trace analysis (optimization, validation, clean lab, QA/QC)
- Safety issues need strong improvement
- Laboratories often have a preference for food analysis

Conclusions

- •Regular inter laboratory studies are needed to monitor and improve the overall level of performance of POPs
- •More laboratories should receive training, either in their own laboratory or, preferably, in an expert laboratory
- •Labs are encouraged to train their own technicians by <u>repeatedly</u> analysing certified and internal laboratory reference materials
- •Interactive workshops through Webinars or on-site with the participating laboratories may help to improve understanding and interpretation of the results and to dissimilate the lessons learned

Conclusions (II)

•All laboratories to pay more attention to quality assurance (QA) and method development

•Regular, <u>routine analyses</u> instead of one-off projects would help to build up the required level of experience for this type

of analysis

