Co-operation / Synergy Between Waste Management & Storage Sectors:

Setting up the Roadmap

Presented By Andrew Helps

Manila, Philippines, December 10th, 2013

Authors: Andrew Helps, Managing Director, Hg Recoveries Pty Ltd Ian A Brown, Technical Director, Hg Recoveries Pty Ltd

Victoria, Australia. A.C.N. 144 752 885

An Image Problem

- The Fundamental issue with Mercury Management is that Mercury does not smell, does not make your eyes weep, is tasteless and invisible in many of its forms
- Even in developed countries, death or disablement from exposure to mercury is rarely, if ever, diagnosed or investigated
- If mercury had an acrid pungent smell and the gaseous forms created crimson red clouds then its removal from the environment would be a total focus of all governments, globally

Inventory ?

- There is no accurate Global Mercury Inventory to provide the hard data required to deliver a meaningful response or even to prioritise the responses to the Minamata Convention
- Contaminated sites are a global issue and <u>are</u> also an intergenerational issue
- There are key lessons to be learned from the inventory models developed for Carbon Dioxide Management

FIRST CUT - GLOBAL MERCURY PATHWAYS

UNEP 3rd Waste Partnership Meeting -6/12/2013

GLOBAL MERCURY PROCESS + CYCLES

Three Sources

- Basically three core mercury pollution sources:
 - Mining: Gold Mining, Cinnabar Mining, Smelting
 - Power production from coal and fuel oil
 - Industry: electrical products, pesticide and fungicide production, ChlorAlkali plants, VCM Plants, paints and coatings
- Most Countries/States have at least one of these sources; <u>many have all three</u>

Sector Rationalization

Key Issues:

- 1. Hg supply to Artisanal Mining Sectors;
- 2. Identification of legitimate users;
- 3. Volume of Hg required by legitimate users;
- 4. Where will Hg be sourced from;
- 5. Location of permanent storage facilities;
- 6. Maintenance and overheads for storage;
- 7. Where is the education of next generation of bureaucrats to come from?

The Overwhelming Issue

 Supply of mercury to the artisanal mining sector for a sufficient period to allow alternative gold recovery technology to be developed and implemented.

Recent Research

- 1. The Wholesale value of mercury used by Artisanal Sector is at least \$US 390 million per year;
- 2. The actual price paid by miners can be up to four times this figure;
- 3. Returns to miners from the sale of gold is often less than 50% of the ruling price;
- 4. Cost of mercury to the Artisanal Miner for recovery of a gram of gold is at least 80 US cents Equivalent;
- 5. Currently a gram of gold is \$US Eq 39;
- The Artisanal Miner is getting between \$US 15-20 per gram;

Recent Research

- 7. Our Preliminary Work indicates the Global Artisanal Sector is using about <u>3980</u> tons of mercury per year.
- On current pricing this sector is producing around \$US Eq 38.5 billion worth of gold.
- 9. Mercury pricing going forward will not impact the Artisanal Sector the miner in the field is currently paying over \$US Eq 400 per Kg for Hg and could pay twice this amount with little impact.
- 10. <u>Between 50% and 80% mass of mercury is used one</u> <u>time only</u>

Mercury Mining

- Mercury mining is the major uncontrolled variable in the mercury supply chain
- Most major historical cinnabar mines have been shut down or heavily curtailed in their operations
- This control of historical suppliers has created the situation where smaller mines in less politically stable areas have been re-opened with little, if any, environmental controls
- This is now a highly profitable business with the International market presently running at \$US 110+ kg

Shipwrecks

- An urgent need to identify historical shipwrecks which contained mercury as ballast/cargoes
- Generally wrecks from the 1830's to 1930 with bulk of the wrecks in the period 1840 to 1890.
- No data on historical exports of mercury from China to mines in the Pacific Basin
- A major pollution source for the marine food chain

Co-operation / Synergy

- Our recent research indicates that small and medium scale Cinnabar Mines may well continue to operate as the rewards are so large;
- Developing mechanisms to better understand the global mercury supply mechanisms;
- Development of alternative cheap and effective gold recovery technology

Mercury in Mining

- Artisanal mining is the biggest consumer of mercury, globally
- Artisanal mining creates the biggest risk to human health and the environment
- There is 'clear evidence' of legally exported dental amalgam mercury being diverted to artisanal mining
- There exists a critical need to provide artisanal miners with cheap effective retorting equipment

Historical Gold Mining

- Over 3000 years of mercury use in amalgamation for fine gold and silver
- Over 3000 years of Cinnabar Mining to produce this mercury
- On a single use basis, at least 50% of the mercury used was lost to the environment
- This is the <u>major global source of gaseous and</u> <u>environmental mercury</u> to this time
- This is the <u>major global raw material for</u> <u>environmental production of methyl mercury</u>

Australian Case Study

- 470+ Historical Gold Mining Areas across Australia
- <u>33% of the entire Australian landmass was subjected</u> to all forms of gold mining activities
- <u>Mercury was used and lost on all Goldfields!</u>

Mercury in Australian Soils

- Pre-gold mining levels were in the range of 2-4 ng/M^2 (2-4 x $10^{-9}g/M^{2}$)
- Post-gold mining levels (circa mid-1970's post Hg usage) could be as high as 80 mg/M², or <u>20-40 million times the 'pre-gold mining level</u>; a 10⁷ times increase across the entire Australian continental land surface

Where is it now?

- Some of the mercury will still be close to where it was lost or is contained within ore crusher fines piles and their associated waterways
- Some of this mercury will have evaporated and been transported by the wind for short to long distances.
- Mercury vapor transported by the wind can condense and enter soil systems when conditions are favorable.
- By this method areas that only had background levels of mercury and no historical gold mining activity can become seriously contaminated

		Liddell's Sands Bendigo - Preliminary Field Survey Data File 7499xlax																												
Site #	Date	GPS Co South	ordinates East	Hg	As	Pb	Cr	Co	Cu	Zn	Mn	Ag	Sr	Ca	P	ĸ	s	n	Fe	a	Se	Rb	Ba	Żī	Mo	Sn	Cđ	Sb	v	81
I	\$/09/2012	36° 44,959°	1441 14.420	112	12,921	625	83	109	157	4,569	413	ND	48	3,982	1,964	8,181	1,081	5,769	289,754	3,045	ND	63	185	296	ND	127	11	153	102	73
	8/09/2012		1000	100	13,841	577	129	100	161	4,470	409	3	37	4,054	254	1,379	1,396	6,803	327,491	3,636	ND	-16	186	610	ND	165	7	157	98	47
	8/09/2012		100	45	14,494	788	118	92	151	1,689	438	. 6	-56	5,215	ND	\$,500	1,393	6,829	319,996	3,089.	ND	54	179.	470	ND	345	7	151	113	47
	8/09/2012			105	16,940	703	87	111	178.	3,327	4/6	2	47	4,067	ND	8,064	1,347	7,215	120,982	3,201	ND	30	100	511	ND.	201	- 11	126	120	10
	8/09/2012			89	12,337	60.3	120	107	140	4,098	428		30	4,101	ND	8,402	3.073	0,133	310,704	3,321	100	20	102	690	ND ND	5990	2	124	102	36
	9/19/20112			90	13,836	674	113	100	157	4,583	422	ŝ	46	4,351	370	8,125	1,529	6,643	312,519	3,358	0	55	186	480	0	314	8	1.40	109	34
2	8/09/2012	36" 44.951"	1449 14.418	76	5,993	2,302	115	53	103	1,873	331	2	153	7,553	ND	8,965	1,673	4,190	150,426	1,736	ND	54	429	125	1	37	3	38	90	ND
	8/09/2012			76	6,524	2,015	98	82	122	1,955	397	1	310	6,565	ND	8,647	1,225	4,152	215,466	2,830	ND	48	326	241	2	128	2	37	97	ND.
	8/09/2012			75	7,960	2,191	90	69	117	1,555	300	6	152	6,205	ND	8,732	1,425	4,420	203,475	2,526	ND.	49	271	384	ND	65	6	37	87	ND
	8/09/2012	100		60	7,035	1,981	84	61	97	1,748	313	3	237	6,605	ND	8,454	2,034	4,670	174,616	2,155	ND	46	313	226	ND	104	4	36	105	ND
	8/09/2012	0.000		π	8,897	1,726	65	17	123	1,792	287	Z	124	6,065	ND	8,823	1,794	4,003	222,559	2,2/3	ND	-19	295	264	ND	60	4	30	109	ND
				73	7,782	2,043	90	68	112	1,785	308	3	195	6,599	0	8,724	1,630	4,287	193,306	2,304	0	49	327	248	4	79	5	36	96	0
3	6,09/2012	36 44.951	144 14.420	51	2,245	165	52	16	33	663	373	2	111	26,194	ND	9,099	740	2,741	33,437	877	ND	39	173	127	1	24	3	1	70	ND
	8/09/2012		100	38	2,178	124	50	23	-00	958	532	- 2	101	30,868	ND.	9,204	1,914	2,449	57,636	877	ND	33	205	131	ND.	22	3	3	21	ND:
	\$/09/2012			-51	2,297	124	- 44	19	31	1,034	435	1	-99	30,929	ND	9,056	449	2,427	54,398	765	ND	35	169	99	ND	12	2	10	62	ND
	8/09/2012			43	2,232	138	-46	12	23	730	386	2	105	26,736	ND	8,645	1,087	2,339	41/498	811	ND	37	154	82	2	15	3	1	68	ND
	8/09/2012	2001		30 43	2,157	163	49	17	33	937	419	2	102	29,021	Q	8,907	1,466	2,824	51,210	821	0	40	175	113	1	26	3	7	68	0
4	8/09/2012	36 ⁴ 44.945	1449 14.437	51	6.516	748	122	160	254	1,210	380	13	80	25.957	ND	3,719	1.048	7.157	624,374	5.153	ND	50	SE	593	ND	3	ND	35	-07	204
	8/09/2012	and the second		79	5,710	778	232	165	250	1,152	353	14	69	24,971	ND	3,405	1,769	8,061	658,412	6,131	ND	43	120	604	ND	3	2	33	124	236
	8/09/2012			68	5,896	738	177	160	245	1,165	356	11	67	25,308	ND	3,824	ND	8,128	627,935	5,355	ND	51	112	630	ND	ND	2	27	114	210
	8/09/2012			78	6,650	777	166	163	261	1,243	435	14	72	27,700	ND	3,611	1,032	9,557	651,707	5,613	.ND	50	125	668	ND	10	ND	32	100	251
	8/09/2012	6.00		63	5,978	768	194	161	233	1,163	427	13	69	26,058	ND	3,319	2,000	8,891	667,366	6,030	ND	56	143	669	ND	5	6	29	123	229
				68	6,150	762	178	162	253	1,187	390	13	71	25,999	0	3,576	1,170	8,359	645,999	5,656	0	50	112	633	0	4	2	31	112	226
5	8/09/2012	36' 44.948'	1440 14.452	109	12,097	650	169	199	351	1,145	597	9	71	17,810	ND	6,493	2,950	10,335	652,339	5,388	ND	59	196	1,070	ND	6	1	117	182	224
	\$/09/2012			107	13,173	948	164	189	342	1,195	558	-14	29	18,120	1,261	6,824	2,015	10,755	649,438	0,100	ND	57	179	1,250	ND.	0	ND	155	158	237
	8/09/2012		100	10	12,291	709	100	10/	301	1,141	5/0	12	22	17,701	300	6,014	4,340	8,092	291,332	5,012	ND ND	38	219	0.31	100	3	2	125	1:30	198
	8/09/2012			52	13,307	874	100	179	238	1,100	548	10	23	16 205	THE?	6,915	1,237	9,837	635 973	5 766	880	60	2019	1,014	140	1	in.	90	108	221
	4,05,201X			88	12,634	855	165	181	333	1,154	567	12	73	17,732	429	6,861	2,304	9,748	634,728	5,798	0	59	200	1,001	0	5	1	116	160	226
6	8/09/2012	362 44,919	1449 14.447	50	7,668	774	127	145	260	925	572	7	53	9,407	ND	6,442	ND	8,118	587,290	5,869	ND	60	216	340	ND	8	ND	22	1.58	244
	8/09/2012			58	8,550	831	113	157	244	973	516	7	54	9,322	ND.	6,518	206	7,756	584,889	5,427	ND	55	289	440	ND	10	2	29	142	181
	8/09/2012	11	-	47	8,825	825	168	139	294	938	557	7	49.	9,878	ND.	6,591	1,771	6,830	578,000	5,652	ND	52	278	429	ND	б.	6	40	154	213
	8,09/2012			60	8,122	825	96	152	297	945	-約8	8	49	8,647	ND	6,632	685	8,397	618,926	5,410	ND	55	273	431	ND	6	4	-37	156	237
	8/09/2012			57 54	8,108	839	120	164	294	958	511	9	-18 51	9,462	ND	6,148	2,331	8,144 7,849	612,840 596,389	5,583	ND	64	336	351	ND 0	3	1 3	38 34	151	220
		nel as more	100.000		-		-																	-	14		1	-		-
7	8/09/2012	10. 44.903.	144, 1473 (0),	135	7,808	1,234	3.25	6.5	235	610	512	4	147	5,391	300	202	333	3,797	414,496	5,614	ALC: NO	39	220	309	1	3	1	37	133	135
	8/00/2012			110	7.540	4,223	100	6.4	21.2	1004	400	1	432	5,322	107	7.452	3,355	1.074	303,007	5 307	100	10	270	344	0	100	2	39	1.50	11.4
	8:00/2012			104	7 205	1.211	100	7.6	226	96.8	50.0		115	4.097	MD	7.711	NO	2.007	120.066	5 730	ARX.	60	256	350	ND	16	4	38	115	150
	8/09/2012			109	6.944	1,258	317	66	211	543	489	4	116	5713	286	7.414	1.016	3,905	387.371	5.991	NO	57	234	393	ND	ND	1	37	107	116
	Celebration encountry				7 230	1.350	117	71	221	\$76	502				220	7 748	1.070	4.021	105 314			500	337	3.34		-		-	124	1.36

How is Mercury Lost

- Gold ore crushing plants used mercury in their stamp beds and recovery tables to amalgamate gold.
- Mercury was exposed to air and evaporated as the crushing process took place.
- The gold recovery bed was covered with running water and mercury was washed out of the final recovery trap attached to fine rock particles and ended up in the environment.

How is Mercury Lost - 2

- Mercury was used by artisan miners working in rivers and streams to amalgamate gold – mercury was lost by evaporation and also washed into rivers and streams via inefficient recovery processes
- Mercury was used in the riffle boxes in all sluicing and dredging operations.
- Mercury was used in all dry blowing (no water available) operations to amalgamate gold and silver particles

How is Mercury Lost - 3

- Mercury was lost when gold amalgam was intentionally heated to evaporate the mercury and recover the contained gold (called dore).
- Mercury poisoning was the biggest unidentified cause of preventable death on all goldfields

ChlorAlkali Plants

- Gradually being phased out due to environmental impacts and <u>high cost of top up</u> <u>mercury</u>
- These plants generated massive profits especially during the period 1930 to 1990.
- By far the most intensive mercury polluters
- Plants often made mercury based pesticides / fungicides and a plethora of organochlorine based chemicals

ChlorAlkali Plants

- The locations of many "remediated" plants have not been properly "remediated"
- Site clean up costs invariably exceed the capital base of the site owner – therefore these sites become an intergenerational legacy issue for a government
- Sites commonly have a large range of toxic metals and chemicals complicating clean up and creating risks from offgassing

- With the advent of the Minamata Convention there will be an urgent need to create at least two "Centres of Excellence" to provide the training for the tens of thousands of people that will be required at a Country and State Level to implement the Targets and Goals of the Convention.
- Generally the 'teachers trainers' for these people are extremely limited, globally

- People who have worked on mercury issues since the 1960's and 1970's are all approaching or are already in retirement
- People with operational experience of mercury based gold crushing equipment are very few, very old and often have cognitive problems caused from their working environment
- People who have operated mercury based ChlorAlkali Plants or VCM plants are still about but most have cognitive problems to different degrees caused from their work

- In the area of historical gold mine assessment there are very few people globally who have done this work and almost all of these are within Government
- In the area of mercury rehabilitation project costing including analytical field XRF work the number of people with required "T-Shape" Skill Sets <u>AND</u> who have done this type of work, is probably less than 10 globally, and they are all now well into their 60's

- Governments will be looking for excuses not to adopt the convention and the major excuse will be the lack of key technical skills to carry out the analyses to determine the extent of mercury risks in their area of control
- The Minamata Convention Secretariat <u>MUST</u> focus on preserving these existing skills and in establishing the required "centres of excellence" as a very urgent priority.

- Without a clearly defined career path for young scientists and engineers in the mercury remediation industry the fundamental goals of the Minamata Convention will most likely not be met
- It is critical that the current knowledge of the very few people experienced in scoping and costing mercury remediation projects be passed down onto the generation of people who will be tasked with delivering the Minamata Convention in practice, into the future.

GETTING IT RIGHT

 The UNEP Mercury Waste Management Partnership must take the lead role to make sure that Educational Resources are in place to deliver to the next generation of Scientists and Engineers the necessary training to oversee the removal of mercury from the global environment, over the next 30 years