# A CASE STUDY OF MERCURY REMEDIATION IN A MINING / INDUSTRIAL AREA: DUMP ALMADÉN MINE

## WORKSHOP ON MERCURY IN THE LATIN AMERICAN AND CARIBBEAN REGION

**BRASILIA, BRASIL** 

MAY 21-22 2012











The Almadén mine has been devoted for more than 2000 years to the exploitation and production of mercury, it is well-known that it is one of the oldest mines in the world

The mercury production activity ended in July 2003





# After the closure, we need the environmental restoration of its dumps, with the alm minimizing the itation effects for more than 2000 years in the environment





### DUMP ALMADEN MINE YEAR





DUMP YEAR 1967





DUMP YEAR 1973





DUMP YEAR 1982



# **DUMP MINE ALMADEN RESTORATION**

This dump has received for centuries sterile from mining works as well as slags produced during metallurgical processes, reaching a volume close to 3,5 million tons, with a surface

of 10 hectares.







## **ENVIRONMENTAL IMPACT ASSESSMENT**

- HYDROLOGIC CONTAMINATION
- ATMOSFERIC CONTAMINATION
- GROUND OCCUPATION
- GEOFISYCS PROCESSES
- GEOTECHNIC RISKS
- MORFOLOGY AND LANDSCAPE





# **ACTION ALTERNATIVES**

- MOVEMENT AND CONSTRUCTION OF A NEW SAFETY DUMP
  - High enviromental and economic impact

## DUMP FORMING AND SEALING

• Good hydrogeological conditions of the dump













# PHASES DUMP FORMING Aims: • Remodel the slopes and the capping plate of the dump • Stabilizing their conditions

Earth filling of 493.582 m3 of material











# 2. DUMP SEALING: Functions:

# • To prevent the entrance of water in the dump, avoiding the generation of lixiviates and the material dispersion.

Insulation, avoiding mercury evaporation in the dump surface













## SLOPE SCHEME SURFACES SEAL

## LOW INCLINE





## SLOPE SCHEME SURFACES SEAL

## **HIGH INCLINE**









## SURFACE SEALED ABOUT 20 SOCCER FIELD



## **GEOCELLS SOUTH SLOPE**

National Technological Center for Mercury Decontamination



The sealing package is componed of:

•175.250 m2 of geotextile

•139.932 m2 de of bentonite

•202.566 m2 of high density polyethylene

•202.116 m2 of draining geocomposed

•100.346 m2 of reinforcement geonetting

• 50.000 m2 of geocells











# PHASES 3.INSTALLATION OF A CAPTURE, CIRCULATION AND EVACUATION WATER SYSTEM

Aim: To evoid the erosive effects which can affect the dump stability







4. RESTORATION OF THE VEGETAL LAYER.

To recover vegetation in the restored surface

The landscape integration of the dump and the surroundings.

## ACTIONS:

PHASES

Contribution of 50 cm of topsoil all over the surface, up tol 170.000 m3

Hydroharvest in 16 ha















## ENVIRONMENTAL VIGILANCE PLAN OF ALMADEN MINE DUMPS

Means of different parameters in groundwater, surface water, soil and air.

The predicted length is 50 years





#### RESTORATION OF THE WASTE HEAP IN THE SAN TEODORO ENCLOSURE

## The first results:

## Emission to the atmosphere





## DUMP ALMADÉN MINE WATER VIGILANCE

The vigilance activities in the postclosing phase of the dumps, refer to the vigilance of waters, mainly:

- Surface waters
- Groundwater

The parameters to control are heavy metals PH, nitrates, nitrile etc





## WATER VIGILANCE

#### CONTROL SPOTS UNDERGROUND WATERS AROUND ALMADÉN MINE



AYUDA



## WATER VIGILANCE

#### CONTROL SPOTS UNDERGROUND WATERS: DRILLHOLES











## WATER VIGILANCE

#### CONTROL SPOTS UNDERGROUND WATERS: WELL AND SPRINGS









#### WATER VIGILANCE

#### CONTROL SPOTS SURFACE WATER. WATERCOURSES

#### WATERCOURSES FUENTE VIEJA Y AZOGADO





WATER VIGILANCE

#### CONTROL SPOTS SURFACE WATER. WATERCOURSES





FECHA







## WATER VIGILANCE

#### CONTROL SPOT SURFACE WATER. VALDEAZOGUES RIVER

#### •9,10 Valdeazogues river

#### •15 Azogado watercourse







VALDEAZOGUES RIVER BEFORE ITS CONFLUENCE WITH AZOGADO WATERCOURSE (POINT 9), AND AFTER THIS (POINT 10)





The restoration actions made

✓ It will reduce drastically the lixiviate production which now have as final destination the surrounding watercourses

- ✓ It will avoid underground flow inside the dump
- ✓ It will avoid the material dispersion and mercury evaporation

To follow the works development visit the website:

## www.ctndm.es/proyectos/1-in.php



Centre Tecnológico Nacional de Descentaminación del Mercurio

AYUDA

esarrollado nor el testimito de Desarrollo Regional - UCI





MINISTERIO DE AGRICULTURA, ALIMENTACIÓN Y MEDIO AMBIENTE

Javier Carrasco Milara: jcarrasco@ctndm.es

THANK YOU

OR YOU ATENTION